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Code Writing
Kreuger et al. (2020)

Bug Detection
Castelhano et al. (2019)

Code Comprehension
Siegmund et al. (2014)

State of the Art – Issues & Gaps:

• Issue: Debugging is dynamic — not yet cognitively modeled 
as a whole

• Issue: Existing cognitive models don’t scale to real-word 
debugging

• Gap: We need models that reflect diverse developer 
experiences
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as a whole

• Issue: Existing cognitive models don’t scale to real-word 
debugging

• Gap: We need models that reflect diverse developer 
experiences

Software Engineer

Approach: 
If debugging is mostly a human-reasoning task, we can 

understand it better by looking at the brain!

DEBUGGING ?

Problem: 
Despite advances in development tools, 

debugging remains a human-driven process 
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(1) We propose a direct, FIVE staged model of end-to-end debugging 
that may generalize to more realistic code for which programmers transition in :

(1) Task 
Comprehension

(2) Fault 
Localization

(3) Code Writing (5) Output 
Comprehension

(4) Compile/Run

Failed Test Cases Passed Test Cases

To Address Issue – Existing Cognitive Models Do Not Scale to 
       Real-World Debugging
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(1) We propose a direct, FIVE staged model of end-to-end debugging 
that may generalize to more realistic code for which programmers transition in :

(1) Task 
Comprehension

(2) Fault 
Localization

(3) Code Writing (5) Output 
Comprehension

(4) Compile/Run

Failed Test Cases Passed Test Cases

To Address Issue – Existing Cognitive Models Do Not Scale to 
       Real-World Debugging

Does each stage of debugging present distinct neural and behavioral activity?
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(2) Using our debugging model, we investigate how variable naming and 
reading ability affects the debugging experience

To Address Gap - Existing models ignore individual differences
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(2) Using our debugging model, we investigate how variable naming and 
reading ability affects the debugging experience

To Address Gap - Existing models ignore individual differences

What we know from Psychology:

Morphemes in English words impact English 

prose comprehension in some people.
Examples:

Single-Morpheme: Father

Multi-Morpheme: Teacher 

Morpheme : a unit of meaning

Do morpheme-varied identifiers and reading 

ability affect debugging performance?
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High-Level Study Overview

We present the first neuroimaging human study (n=28) of end-to-end 
debugging!

Primary Contribution:
We develop the first cognitively and behaviorally validated cognitive model 

of debugging. (RQ1)

Secondary Contribution:
We develop insights into how variable naming related to morphemes and 
reading ability contribute to debugging outcomes. (RQ2) (RQ3)
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High-Level Study Overview - Methods

We use Functional Near Infrared 

Spectroscopy (fNIRS) to capture distinct 

brain activation patterns of programmers 

while conducting real-world debugging.

How do did we measure brain activity? 
fNIRS uses light to measure the oxygen 

levels in different parts of the brain

fNIRS allows for subjects to realistically 

program (e.g., on a laptop, with IDE) 

(unlike fMRI)
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High-Level Study Overview - Methods

How do did we measure behavior outcomes?

We use VSCode with extensions.

We track keystrokes, output files, compiled 

files, window-switching, time spent at each 

file, and time spent to successfully fix bug

How do did we measure brain activity? 

We use Functional Near Infrared 

Spectroscopy (fNIRS) to capture distinct 

brain activation patterns of programmers 

while conducting real-world debugging.
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Experimental Design – Debugging Task 

Each stimuli contains:

• Problem Description 

    (text file)
• Leetcode-Style Python Problem

    (<15 lines)
• 1 Seeded Defect
 (i.e., line of missing code)

• 1-3 Test Cases 
• Error Message

 (text file)

Participants were tasked with debugging 13 faulty Python programs in VSCode IDE 
in ~50 minutes (10 min per problem) while wearing an fNIRS device

To assess the cognitive and behavior outcomes during debugging:
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Experimental Design – Morpheme-Identifier Conditions

To assess the impact of morpheme-related identifier naming on debugging:

• We used a validated list of morphemes from the established corpus of Marks et al. 

• Randomly assigned to participants (no participant saw the same problem more than once)

We designed 4 identifier treatment conditions per debugging problem
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Experimental Design – Data Collection & Analysis

Each study session lasted ~90 minutes

➢ 13 stimuli – debugging tasks with each 
having

➢ 4 variations per identifier condition
➢ Reading Ability Test 

Data Analysis - 28 Participants (7 women, 21 men)

➢ Compare activation by each debugging phase and identifier 
condition by brain area using best practices from psychology

➢ Compare debugging outcomes within conditions
➢ Significance threshold: p < 0.05
➢ FDR to correct for multiple comparisons: q < 0.05
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3. Results

4. Research Implications
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Research Questions

We aim to answer the following research questions:

• RQ1  - Do our stages of debugging exhibit distinct (a) behavioral and 
      (b) neural patterns? 

• RQ2  -  During debugging, how do morpheme-varied identifier names 

affect debugging (a) behaviorally and (b) cognitively?

• RQ3 -  During debugging, how do individual skills (i.e., reading ability 

and programming experience) affect neural activity? 
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RQ1a: Are our stages of debugging BEHAVIORALLY distinct?
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Answer: Yes!

(1) Participants followed the expected stage-by-stage flow of the 
debugging model in over 97% of cases.

(2) Participants spend statistically significantly different amounts of 

time in each stage (p<0.001)

RQ1a: Are our stages of debugging BEHAVIORALLY distinct?
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RQ1b: Are our stages of debugging COGNITIVELY distinct?
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Answer: Yes!

(1) Debugging stages are correlated to different patterns of neural activity (p<0.05)

o (i.e., each stage the model presents patterns of neural activity that vary from each other)

RQ1b: Are our stages of debugging COGNITIVELY distinct?
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Answer: Yes!

(1) Debugging stages are correlated to different patterns of neural activity (p<0.05)

o (i.e., each stage the model presents patterns of neural activity that vary from each other)

Red regions indicate statistically significantly 

different neural activity for that debugging 

state contrasted to “Rest” (i.e., doing nothing 

while waiting for compilation)

RQ1b: Are our stages of debugging COGNITIVELY distinct?
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Answer: Yes!

(1) Debugging stages are correlated to different patterns of neural activity (p<0.05)

o (i.e., each stage the model presents patterns of neural activity that vary from each other)

Debugging Stage Key Brain Region Cognitive 
Function

Task 
Comprehension

Temporal cortex 
(Wernicke’s, 

Broca’s, BA 21, 52)

Language 
comprehension, 

auditory processing

RQ1b: Are our stages of debugging COGNITIVELY distinct?
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Language 
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Code Editing Angular gyrus (BA 
39)
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problem-solving

RQ1b: Are our stages of debugging COGNITIVELY distinct?
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Answer: Yes!

(1) Debugging stages are correlated to different patterns of neural activity (p<0.05)

o (i.e., each stage the model presents patterns of neural activity that vary from each other)

Debugging Stage Key Brain Region Cognitive 
Function

Task 
Comprehension

Temporal cortex 
(Wernicke’s, 

Broca’s, BA 21, 52)

Language 
comprehension, 

auditory processing

Fault Localization No significant 
activation

???

Code Editing Angular gyrus (BA 
39)

Spatial cognition, 
problem-solving

Output 
Comprehension

Right DLPFC (BA 
46)

Working memory

RQ1b: Are our stages of debugging COGNITIVELY distinct?



33

RQ1: Summary

These findings support the idea that the debugging process involves 

behaviorally and cognitively distinct stages, forming a robust 

foundation for the proposed end-to-end debugging model.

(1) Task 
Comprehension

(2) Fault 
Localization

(3) Code Writing (5) Output 
Comprehension

(4) Compile/Run
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RQ2a: How do morpheme-varied identifier names correlate 

with specific patterns in BEHAVIORAL outcomes?
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RQ2a: How do morpheme-varied identifier names correlate 

with specific patterns in BEHAVIORAL outcomes?

Answer: We find no statistically-significant differences in behavioral 
outcomes as a function of reading ability OR identifier conditions (p > 0.09). 
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RQ2a: How do morpheme-varied identifier names correlate 

with specific patterns in BEHAVIORAL outcomes?

Answer: We find no statistically-significant differences in behavioral 
outcomes as a function of reading ability OR identifier conditions (p > 0.09). 

This finding is interesting!

• Individuals with reading difficulties may struggle with complex prose.

• However, our findings suggest lower English reading ability do not 

significantly affect debugging speed or accuracy.

• Implications for hiring.
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RQ2b: How do morpheme-varied identifier names correlate 

with specific patterns in COGNITIVE outcomes?
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RQ2b: How do morpheme-varied identifier names correlate 

with specific patterns in COGNITIVE outcomes?

Answer: All three conditions show increased 

neural activity compared to original variables in language 
regions (p < 0.05) with simple-morpheme showing a 

greater contrast.
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RQ2b: How do morpheme-varied identifier names correlate 

with specific patterns in COGNITIVE outcomes?

Answer: All three conditions show increased 

neural activity compared to original variables in language 
regions (p < 0.05) with simple-morpheme showing a 

greater contrast.

This finding is interesting!

• Poor naming might not slow people down behaviorally, but it still 

makes their brains work harder.

• These findings replicate prior work that found that less meaningful identifiers lead 

to increased cognitive load (Siegmund et al. and Fakhoury et al.) 
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RQ2: Summary

Findings emphasize the importance of careful identifier naming

• Variable naming variations lead to no significant impact on debugging 

performance, even for those with reading difficulties

• All naming variations increase neural activity → higher cognitive load

• Single-morpheme identifiers trigger distinct activation → likely due to 

     misleading semantics
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Towards a Cognitive Model of Dynamic Debugging: 
Does Identifier Construction Matter?

In summary, we use neuroimaging of programmers (n=28) to find:

• A cognitively and behaviorally backed dynamic model of debugging RQ1

• Morpheme-varied identifiers have no significant impact on debugging performance, 

regardless of reading ability RQ2

• Morpheme-varied identifiers induce greater cognitive load than original RQ2

• Lack of expertise induces more cognitive load than reduced reading ability RQ3

Danniell Hu, Priscila Santiesteban (pasanti@umich.edu), Madeline Endres, Westley Weimer
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Results – Reaction Time Distribution vs Reading Ability

Overall Stats: 

Mean: 185.79s 

Median: 138.23s
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Results – Reaction Time Distribution vs Reading Ability

Overall Stats: 

Mean: 185.79s 

Median: 138.23s

Categorical Reading  mean_time median_time  

Above Average  187.598468 119.50  

Below Average  220.620633 188.32  

Highly Above Average 187.665152 160.28  

Highly Below Average 121.650213 105.20
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Results – Reaction Time Distribution vs Raw Reading Score
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Experimental Design – Reading Assessment

We measured participants' English 
reading skills using the TWRE, a 

validated test widely used in research 
and practice.

•  Lower TWRE scores indicate lower 
reading ability, while higher scores 

indicate stronger reading skills.
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