
VarFix: Balancing Edit Expressiveness and Search Effectiveness
in Automated Program Repair

Chu-Pan Wong
Carnegie Mellon University

Pittsburgh, PA, USA

Priscila Santiesteban
Coe College

Cedar Rapids, IA, USA

Christian Kästner
Carnegie Mellon University

Pittsburgh, PA, USA

Claire Le Goues
Carnegie Mellon University

Pittsburgh, PA, USA

Buggy Program

Test Suite

E1

E2

E3

E1

E1&E2

E1&¬E3

E1&E2&¬E3 E1

E1&E2

E1&¬E3

E1&E2&¬E3

Fault Localization Edit Factory

Step 1: Edits Generation with GenProg

Step 2: Meta-Program Generation

Single Edits

Step 3: Variational
Execution

Meta-Program
Plausible Patches Step 4: Patch Ranking Ranked Patches

Figure 1: Overview of our program repair approach.

ABSTRACT

Automatically repairing a buggy program is essentially a search
problem, searching for code transformations that pass a set of tests.
Various search strategies have been explored, but they either navi-
gate the search space in an ad hoc way using heuristics, or system-
ically but at the cost of limited edit expressiveness in the kinds of
supported program edits. In this work, we explore the possibility of
systematically navigating the search space without sacrificing edit

expressiveness. The key enabler of this exploration is variational
execution, a dynamic analysis technique that has been shown to
be effective at exploring many similar executions in large search
spaces. We evaluate our approach on IntroClassJava and De-
fects4J, showing that a systematic search is effective at leveraging
and combining fixing ingredients to find patches, including many
high-quality patches and multi-edit patches.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Error handling and recovery.

KEYWORDS

automatic program repair, variational execution
ACM Reference Format:

Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le
Goues. 2021. VarFix: Balancing Edit Expressiveness and Search Effectiveness
in Automated Program Repair. In Proceedings of the 29th ACM Joint European

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468600

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468600

1 INTRODUCTION

We propose a novel search strategy for automated program repair
to systematically explore possible repairs in rich search spaces with
diverse fixing ingredients, including multi-edit patches. Bugs are
pervasive and costly [41] and traditional manual repair is expensive
and time-consuming [33]. Automated program repair is a promising
idea, aimed at automatically finding patches to a program, such
that the program passes all provided tests. Automated program
repair has seen significant research attention [27] as well as initial
industrial adoption [3, 21].

Automated program repair techniques generate patches for a
buggy program to satisfy a given (partial) specification of program
behavior, usually provided as a set of tests [18, 20, 25, 27, 44, 45]. A
patch typically contains one ormore code edits that are generated by
instantiating edit templates for different fixing ingredients, similar to
howmutation operators are used to generate mutations in mutation
testing research. Given a program and its test suite with at least
one failing test, repair approaches search for patches such that the
test suite passes.

Existing approaches to automatic program repair essentially
solve a search problem. The search space is defined by the set of
possible edits, e.g., copying code [44, 45] or modifying expres-
sions [8, 18, 25]; it is typically large and grows exponentially if
combinations of multiple edits are considered. To navigate such a
huge search space, different search strategies have been explored,
such as genetic programming [44], guided search using statistical
models [20, 45], and program synthesis [8, 15, 25]. There are two
keys to solving the search problem, edit expressiveness and search

effectiveness. These concerns are in tension, and existing techniques
usually prioritize one of them:

354

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3468264.3468600
https://doi.org/10.1145/3468264.3468600
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3468264.3468600&domain=pdf&date_stamp=2021-08-18

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

• Heuristics-based approaches like GenProg [44], PAR [14], and
CapGen [45] excel at edit expressiveness. They explore a
large space of potential edits by executing the test suite for
one patch candidate at a time. This process is well-suited for
trying many different kinds of edits, including adding and re-
moving statements [44], mutating expressions [15, 22, 25, 45],
and edits following specific patterns such as inserting null
checks [14]. But, as search spaces grow, search effectiveness
typically declines [19].

• Semantics-based approaches like Angelix [25] and S3 [15]
excel at search effectiveness by encoding the search as a syn-
thesis problem [8, 15, 15, 25, 37, 51] (using classic AI search
techniques focused on pruning infeasible parts quickly, as
in SAT and SMT [34]) to find expression-level changes that
meet the constraints collected with program analysis (usu-
ally symbolic execution) from tests. The synthesis technique
limits expressiveness and scalability, resulting typically in
a narrow focus on few kinds of edits, e.g., edits of expres-
sions of boolean and integer types in conditions or assign-
ments [8, 15, 15, 25, 37, 51].

In this work, we pursue higher search effectiveness without sac-
rificing edit expressiveness. Our goal is to perform an efficient sys-
tematic search in a search space of allowing many different kinds
of edits as in heuristics-based approaches. Our key insight is that
repeated test executions for many potential patches are very similar
(as edits tend to be focused in a relatively small part of the trace
as narrowed down by fault localization techniques) and exploiting
those similarities can speed up the search. To exploit test execution
similarity, we use variational execution [1, 26, 29, 47].

Variational execution is a dynamic analysis that executes a pro-
gram for multiple inputs or multiple variants once, sharing the
execution whenever possible, and systematically exploring all al-
ternatives and interactions. Reminiscent of many model checking
strategies, when an edit is encountered, variational execution splits

the execution to compute the program states with and without
the edit. Also, importantly, variational execution then merges ex-
ecutions again to execute the rest of the program only once. Con-
ceptually, given a finite search space of edits as fixing ingredients,
a single run of variational execution is equivalent to running all
edits and their combinations in isolation. With sufficient sharing,
variational execution often can systematically explore large search
spaces efficiently, as shown in recent work on tracking sensitive in-
formation flow [2, 52], testing highly configurable systems [26, 29],
and finding higher-order mutants [46].

As we will explain in more detail, our approach consists of four
steps, also illustrated in Figure 1: (1)We collect a set of possible ed-
its, similar to traditional heuristics-based techniques. (2)We merge
all collected edits into a meta-program, where all edits are guarded
by if-conditions that control whether to include the edit at runtime.
(3) We execute the meta-program with variational execution to ob-
serve which combinations of edits (in terms of the Boolean variables
that guard the edits) pass each test, returned as propositional formu-
las, from which we enumerate all patches that pass all tests within
the search space. (4) To identify likely high-quality patches among
all plausible patches, we further filter and rank patches, using heuris-
tics based on their influence on program state and control flow.

1 if (a < b && a < c && a < d) {
2 smallest = a;

3 } else if (b 1 < ⇒ <= a && b < c && b < d) {

4 smallest = b;
5 } else if (c < a && c < b && c < d) {
6 smallest = c;
7 } else {

8 if (d < a && d < b 2 && ⇒ || d < c) {

9 smallest = d;
10 }

11 3 smallest = c;

12 }

Figure 2: Incorrect program with suggested 3-edit patch,

simplified from smallest-1b31fa5c-003. Intuitively, Edit 3
makes c the default output, Edit 1 handles cases where a and
b are equal and smallest, and finally Edit 2 checks for cases

where d is the smallest.

We evaluate our approach both with the 297 bugs from Intro-
ClassJava and with 282 bugs from Defects4J. We show that our
approach can fix 107 IntroClassJava bugs and 35 Defects4J bugs,
including many that require edits in multiple locations, can scale
to fairly large programs and search spaces, can generate very large
sets of patches for bugs (up to 32841 correct patches for a single
bug), and can effectively rank correct patches highly.

We make the following contributions in this work:
• We prototype a repair tool named VarFix built on top of
GenProg and VarexC, the state-of-the-art implementation
of variational execution for Java.

• We demonstrate that it is promising to systematically explore
large search spaces for program repair using variational
execution (e.g., fixing 142 out of 579 evaluated bugs).

• We demonstrate the ability to find high-quality patches,
made possible by a systematic exploration of the search
space (e.g., generating thousands of correct patches).

• We demonstrate the ability to better find multi-edit patches,
as a key benefit of the more efficient search strategy (e.g.,
finding hundreds of patches that require 3 edits).

• We demonstrate the benefit of enumerating and ranking
many plausible patches over just reporting the first one found
in terms of improved patch quality (e.g., ranking the correct
patch in top 10 in 23 out of 24 cases).

2 REPAIR CHALLENGES

We use an example to discuss limitations of existing work and
benefits of our approach. In Figure 2, we show a buggy program
taken from IntroClassJava and a patch found by our approach.
The program should output the smallest of four inputs. Due to the
use of incorrect relational operators, it fails if the smallest number
appears more than once in the inputs. Our patch consists of three
edits: two modify operators in Boolean expressions, while the third
inserts a statement taken from the existing code. For the same
program, other patches can be found, all requiring multiple edits.

2.1 Edit Expressiveness vs. Search Effectiveness

The success of existing program repair techniques largely depends
on the balance between edit expressiveness and search effectiveness,
which affects their ability to fix programs like our example.

355

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Heuristics-Based Repair. Heuristics-based approaches usually can
experiment with many different kinds of edits, including the state-
ment and expression changes in Figure 2. For example, GenProg [17,
44] can add/replace/delete statements in the original program, such
as Edit 3 in Figure 2; JMutRepair [22] uses classic mutation opera-
tors to tweak existing expressions, such as Edits 1–2 in our example;
others specialize edits for certain classes of faults, such as patterns
mined from human patches and patterns for commonmistakes used
in PAR [14], SPR [18] and Prophet [20]. Overall, the community is
moving toward increasingly larger search spaces of edits.

The larger the space of possible fixing ingredients, the more
challenging the search for a patch [19]. Even just executing tests for
single-edit patches can take a long time and a systematic exploration
of multi-edit patches is usually not considered feasible. Instead, ex-
isting approaches largely rely on different heuristic search, such as
random search [32], genetic programming [17, 44], deterministic
heuristic traversal of single-edits [43], and probabilistic exploration
favoring certain kinds of edits, possibly informed by distributions
of human patches[18, 20, 45]. Mechtaev et al. [23] divide individual
fixing ingredients into test-equivalence classes to reduce test execu-
tion cost and thus improve search efficiency of existing repair tech-
niques. None of the current approaches can systematically explore
larger search spaces, and current search heuristics often do not work
well for multi-edit patches (e.g., fitness functions in genetic pro-
gramming cannot well recognize partial correctness in multi-edit
patches); it is possible but unlikely that they find the right combina-
tions of the three edits in our motivating example. Indeed, empirical
evidence suggests that existing search strategies perform worse in
larger search spaces, generating fewer correct patches due to time-
out or stopping with plausible but ultimately incorrect patches [19].

Semantics-Based Repair. Semantics-based approaches can effec-
tively explore search spaces by delegating the search to program
synthesis techniques, but they usually restrict themselves to small
edits at the expression level (e.g., tweaking Boolean expressions
in if conditions) to make program synthesis tractable. Edit ex-
pressiveness is mainly restricted by the scalability of constraint
solvers and the types of theory they can reason about [15]. Thus,
existing approaches are unlikely to find patches for our motivating
example, because (1) statement level changes are not supported
and (2) synthesizing multiple expression-level changes in different
locations poses a scalability challenge for synthesis, especially for
large programs in practice. For example, DirectFix needs to symbol-
ically execute the whole program under repair to synthesize edits
at multiple locations [24]; Angelix mitigates this issue by applying
symbolic execution exclusively to a few suspicious expressions, but
requires buggy locations to be physically close [25]. S3 essentially
repairs each buggy location separately, putting more pressure on
the underlying program synthesizer [15].

2.2 Open Challenges

Several open challenges of automatic program repair boil down to
maintaining a good balance between edit expressiveness and search
effectiveness. Our approach strives for a balance by pursuing a more
systematic search within a search space of more expressive edits.
In the following, we discuss some open challenges our approach
can potentially shed light on:

General-Purpose Repair. Usually, the more expressive edits are
supported, the larger the search space becomes, and the more dif-
ficult it becomes to explore that search space systematically. Ap-
proaches with more expressive edits have the theoretical ability
to repair more bugs, but may find it harder to find actual repairs
in practice. Our approach can easily integrate different kinds of
edits, just like heuristics-based approaches, promising high edit
expressiveness. It then enables an efficient search among a finite
number of edits and their interactions, more similar to test execu-
tion in heuristics-based approaches, without being limited by the
capabilities of synthesis approaches.

Multi-Edit Repair. Recent empirical studies suggest that making
multiple edits is common when developers fix bugs [12, 54], but
automatically generating multi-edit patches remains challenging.
In theory, many repair approaches can find multi-edit patches. In
practice, they struggle with finding them because techniques do not
explore edit interactions systematically and do not have a good way
of judging partial correctness that may help to guide the search for
multiple fixing ingredients. Our approach can explore interactions
among multiple edits systematically (up to a configurable bound),
ensuring that, if our search terminates, we can identify all available
multi-edit patches within a given search space.

Patch Quality. The research community has identified the ten-
dency of program repair to produce low-quality patches that pass
all provided tests, but do not generalize beyond them, as a key
challenge [27, 38]. We follow the typical distinction between plau-

sible patches as those that pass all tests and correct patches that
meet the intended specification (typically not easily available, and
may require human judgement). Long and Rinard [19] found that
plausible patches often starkly outnumber correct patches, making
automated repair possibly less useful, especially those techniques
that simply report the first identified plausible patch. Recent work
primarily focuses on anti-patterns to skip low quality patches [40]
or on tweaking search strategies to prioritize edits that are less
likely to overfit [49]. In contrast, we use a different strategy of em-
bracing a rich and diverse edit space, then enumerating all plausible
patches within the search space, but adding a final filtering and
ranking step to suggest those patches that are likely of higher qual-
ity. In line with prior suggestions [19, 49], our ranking step uses
information beyond just the test suite to evaluate patch quality, and
additionally compares the severity of data and control-flow changes
for the enumerated plausible patches. Ranking patches from a large
pool of plausible patches provides a more promising way of identi-
fying high-quality patches than simply returning the first plausible
patch (as in heuristics-based approaches) or the smallest plausible
patch (as in semantics-based approaches).

3 META-PROGRAM GENERATION

The first part of our approach (cf. Figure 1, Steps 1 and 2) is to
generate a large set of edits and combine them into a single meta-
program, where each edit is guarded by a control-flow condition.
With this encoding, we can later use variational execution to effi-
ciently run the tests across all combinations of edits. The edits in
the meta-program define the (finite) search space of patches.

356

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

1 if (a < b && a < c && a < d) {
2 smallest = a;

3 } else if (b 1 (e1 ? b <= a : b < a) a && b < c && b < d) {

4 smallest = b;
5 } else if (c < a && c < b && c < d) {
6 smallest = c;

7 } else if (2 e2?(d<a && d<b || d<c):(d<a && d<b && d<c)) {

8 smallest = d;
9 } else {

10 3 if (e3)

11 3 smallest = c;

12 3 else

13 3 smallest = Integer.MAX_VALUE;

14 }

Test Original Passing Condition

assert smallest(1, 2, 3, 4) == 1 ✓ true
assert smallest(1, 1, 1, 1) == 1 ✗ e3
assert smallest(1, 1, 2, 3) == 1 ✗ e1
assert smallest(1, 2, 3, 1) == 1 ✗ e2

Whole test suite ✗ e1 ∧ e2 ∧ e3

Figure 3: The upper part is an example ofmeta-program that

encodes 3 edits for smallest-90834803-005. The lower part

is a manually constructed test suite for demonstrating how

variational execution is used. The Original column reports

test outcomes of the original buggy program.

For generating edits, we build our approach on top of a GenProg
implementation for Java [39] because of its conceptual simplicity
and extensibility. We first use GenProg’s fault localization tech-
nique to narrow downwhere to generate edits. In those likely-faulty
locations, we useGenProg’s edit templates to generate edits, one at
a time. We inherit the three classic edit templates APPEND, REPLACE,
and DELETE that modify statements, as well as five additional clas-
sic mutation operators: Arithmetic Operator Replacement (AOR),
Relational Operator Replacement (ROR), Logical Connector Replace-
ment (LCR), Absolute Value Insertion (ABS), and Unary Operator
Insertion (UOI). We selected these five operators for several reasons.
First, they mutate expressions, allowing our search space to in-
clude finer-grained edits than GenProg ’s original statement-level
changes. Second, research has shown the usefulness of these op-
erators in mutating programs [30, 31]. Finally, they can be applied
to a wide variety of programs, including simple programs in In-
troClassJava. Other edit templates (e.g., those that target specific
fault classes [19, 35, 45]) can be easily integrated as extensions.

We modified GenProg to repetitively mutate the given buggy
program until a specified number of different edits are generated or
all possible edits from the templates are exhausted. We then discard
edits that are not compilable (a standard GenProg step). Finally,
we merge those edits into one meta-program.

Similar to prior work that uses meta-programs [6, 13, 43, 46], we
encode all edits as optional code paths (guarded by if-then-else
statements/expressions) into a single meta-program. For each edit,
we introduce a Boolean option (e.g., global static field in Java)
that decides whether the original or the edited code is executed in
runtime, as illustrated in Figure 3.

While the approach is simple and flexible, supporting many
different edits, there are two technical challenges in the implemen-
tation: First, putting too many edits into a single Java method can
exceed size limits of Java bytecode. We refactored a few gigantic
Java methods (e.g., more than 800 lines of code) in some of the
Closure programs into smaller methods because of size limits. This
is unique to the specific bytecode transformation implemented
in VarexC, the tool we use for variational execution, rather than
to variational execution in general. Whenever possible, we push
edits into small methods after performing semantics-preserving
refactoring. We run all existing tests to validate the refactoring
changes. Second, our approach inherits nondeterminism from Gen-
Prog when generating edits, thus while we will systematically
explore the search space, the generated edits in the search space
may differ between runs.

4 SYSTEMATIC SEARCH

After creating the meta-program, we execute the test suite using
variational execution to determine what combinations of edits can
pass all tests (cf. Figure 1). Adopting variational execution raises
search effectiveness because, with it, we can explore the search
space in an efficient and comprehensive way, rather than checking
one patch at a time.

4.1 Background on Variational Execution

Variational execution can be seen as a specialized form of symbolic
execution or model checking that aggressively joins state and that
limits symbolic inputs to those with finite domains (usually Boolean
values). For the purpose of this paper, a mental model of symbolic
execution will provide a close-enough approximation of how the
approach works. Given that we largely reuse variational execution
as an off-the-shelf black-box technique, we will only provide a quick
overview, and refer interested readers to existing literature for a
more in-depth explanation and formalization [1, 26, 29, 47].

Using variational execution, we execute the test suite of a meta-
program with the test suite’s concrete inputs, but with symbolic

values for all Boolean variables introduced in the meta-program to
guard the edits to be explored (e.g., e1, e2 in Fig. 3). Variational execu-
tion will execute a test normally with concrete values until it hits a
decision that depends on an a symbolic value (representing an edit),
where it explores both branches. After exploring both branches un-
der corresponding symbolic path conditions, variational execution
joins the state again to execute subsequent statements only once,
while representing state differences as if-then-else expressions. For
example, x = e1 ? (e2 ? 2 : 9) : 1 represents concrete value 1, 2 or
9 depending on whether edits e1 and e2 were selected. When the
execution hits an assertion, we can derive a propositional formula
describing the set of assignments to symbolic values (i.e., the set of
edit combinations) that violate the assertion; for example, assert x>5

fails under condition ¬e1 ∨ e2. Similarly, we can record the path
condition when an exception is thrown. That is, for each test exe-
cution, we can collect the set of edit combinations for which the
test passes as a propositional formula, without having to execute
the test for every edit combination separately.

If edits interact too much, variational execution can run into
the same state explosion problem as other analysis techniques;

357

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the key question is whether the program repair problem contains
sufficient sharing to make variational execution feasible. The key
insight in using variational execution is that most test executions
are similar or even identical when edits modify the buggy program.
Many edits have only minor and local effects on control flow and
program state of some test executions, and most computations
are the same or similar independent of whether an edit is applied.
Variational execution exploits those sharing opportunities among
many similar executions with minor differences, regarding both
data flow and control flow. But, it also systematically explores all
interactions among options if they lead to state differences. Note
that variational execution is unusually aggressive in how it always
merges all program state at the level of variables and fields after each
statement, helped by its restriction to finite search spaces. Similar
state merging techniques have also been discussed and adopted for
model checking and symbolic execution (e.g., [36, 42]), achieving
significant improvement over conventional state merging.

4.2 Using Variational Execution to Find

Plausible Patches

To identify which combinations of edits can pass all tests and fix
the buggy program, we execute each test for the meta-program
(with symbolic values representing all edits) and capture for each
test the passing condition, a propositional formula compactly de-
scribing the combinations of edits for which the test passes. Any
combination of edits that meets the passing conditions of all tests
represents a plausible patch. To enumerate all plausible patches,
we use a SAT solver or BDD to enumerate all solutions that satisfy
the conjunction of all passing conditions.

For example, in Figure 3, assert smallest(1, 2, 3, 4) == 1 passes
under condition true, meaning that the test passes without any
edits and no edit breaks the test either. However, the second test
assert smallest(1, 1, 1, 1) == 1 passes under condition e3, mean-
ing that it can pass only when Edit 3 is applied, independent of the
other edits. Finally, the conjoint passing condition for the whole
test suite is e1 ∧ e2 ∧ e3, suggesting that we need all three edits to
fix the program.

If variational execution and the SAT solver terminate, we have
explored the entire given search space of patches. We can be sure
that we will have found all edit combinations that pass the test suite
and no additional ones. If the joint passing condition is unsatisfiable,
we know that there is no edit combination in the search space that
passes all tests—that is, we simply do not have the right fixing
ingredients to patch the program.

4.3 Implementation and Limitations

We use VarexC, a state-of-the-art variational execution engine
for Java developed in prior work [47]. In practice, especially for
large search spaces that contain thousands of edits, we still often
experience slow executions and executions that do not terminate
within time budget due to state space explosion. To address these,
we made several adjustments to make it better fit the characteristics
of program repair problems, usually by focusing the search on
smaller spaces. We name our overall repair tool VarFix.

Early termination. We use variational execution to execute test
cases one at a time (with all edit combinations), but prioritizing

test cases that the original buggy program fails. After each test
execution, we check if there exist any combinations that can pass
the tests executed so far, and continue to the next test only if there
remain solutions in the search space. This way, we can often termi-
nate the search early, knowing that no combination of the edits in
the meta program will pass all tests.

Bounded search. While variational execution can conceptually
explore all possible interactions within the search space, doing so
may be expensive when many edits interact. In addition, patches
that combine more than a few edits may be too complex to be useful.
We extended VarexC to (optionally) bound the search space to limit
the number of individual edits in a patch. Technically, we simply
prune states and execution paths that are only feasible with more
than 𝑛 activated edits. Note that we still systematically explore all
edit combinations within the bound.

Partitioning edits. Orthogonal to bounding the degree of inter-
actions, we can also explore interactions among fewer edits. We
implement an option to partition the edits, considering at most 𝑛
edits and their interactions at a time. The partition strategy can
be customized, including random (default) or partition by location
or fault-localization suspiciousness. Within each partition, we still
explore interactions among edits, but we would not detect patches
that require combinations of edits from different partitions, thus
may miss patches that would be feasible in the larger search space.

Fast mode. We noticed that variational execution spends a lot
of time exploring exception handling paths (e.g., division by zero),
which is expensive in VarexC [47]. While successful patches might
conceivably involve throwing and catching exceptions, we (option-
ally) prune those execution paths where exceptions are thrown
due to one or more edits. Note that we may miss patches due to
this optimization, unless we explore the pruned paths later. This
optimization is similar to how S3 uses symbolic execution to run
failure-free execution paths [15].

Limitations. Similar to symbolic execution, variational execution
needs to handle the environment barrier when interacting with
an external runtime environment, for example, via I/O and native
method calls. This issue can typically be mitigated with engineering
effort, such as implementing model classes to mimic behavior of
the environment [47]. As a research prototype, VarexC provides
model classes for many common APIs, but not for all; hence we
performed minor refactoring in some of the Closure programs to
use functionally equivalent model classes that VarexC already
supports, such as replacing StringWriter with StringBuilder.

In some systems we still observed a small number of tests that
we could not execute without investing significant engineering
effort. Here we adopted a hybrid strategy: First, we collect passing
conditions from all tests we can execute with variational execution,
skipping the problematic ones. Second, we execute the skipped tests
normally without variational execution for all edit combinations
that pass the joint pass condition to see whether they fail any of the
skipped tests. This way, variational execution significantly prunes
the search space, but some final exploration remains limited to
executing the remaining tests one patch candidate at a time.

358

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

Finally, edits often introduce infinite loops in some execution
paths. Since we do not want to terminate the test case for all execu-
tions, we prune execution paths that exceed an upper limit for the
number of executed basic blocks in a method or a maximal stack
height.

5 PATCH FILTERING AND RANKING

With variational execution, we can enumerate all plausible patches
in a search space, often finding large numbers of plausible patches
that can pass all tests. However, not all patches generalize well
beyond the test suite. Our approach opens new opportunities to
try to identify higher-quality patches among a pool of plausible
patches, rather than simply returning the first patch found. We
demonstrate the benefits of this strategy with a simple filtering and
ranking strategy, that can easily be extended in future work.

Filtering by patch minimization. For every plausible patch, we
often find additional patches with a superset of edits. This often
happens when some edits are needed to pass the tests, and other
edits can be added that do not influence the test outcome or are
not even executed by the tests. The extra changes may fix issues
for inputs not tested by the test suite, may break behavior for
inputs not tested, or may simply be behavior-preserving for all
possible inputs—we have no way of telling. Patch quality is often
measured with held-out tests in academic evaluations [15, 28, 38]
or by comparing against another oracle, but neither of those is
available in practical settings.

In a patch minimization step, we filter all patches for which we
found another patch with a strict subset of edits. That is, we remove
all edits that are not necessary for passing all tests. This way, we
avoid showing many similar patches with the same core edits to
developers and we generally favor shorter patches. This is concep-
tually equivalent to patch minimization using delta debugging in
the original GenProg implementation [44].

Patch ranking. Since all plausible patches are indistinguishable
from the test suite’s perspective (i.e., all tests pass for all plausi-
ble patches), we need to judge patch quality using other informa-
tion [19]. Our solution is inspired by insights from Xiong et al.
[49], who observed that a correct patch should have little effect on
passing tests (in terms of similarity between execution traces), but
should cause failing tests to behave differently. A side benefit from
variational execution is that we can easily track rich information
about differences between executions, by tracking path conditions
and conditions that describe state differences. Note that variational
execution is not essential here, just convenient; such information
could conceptually also be collected with other tools as in the work
of Xiong et al. [49].

In a nutshell, we compute a distance between the unpatched
and the patched program. We experimented with five different dis-
tance measures. In addition to two static edit-distance measures,
(1) number of AST transformations measured with GumTree [10]
and (2) number of characters changed measured with Levenshtein
distance, we measure the difference between a test’s execution on
the original unpatched program and the test’s execution on the
patched program: (3) frequency with which we assign different
values in statements that change program state, (4) frequency of

different branches taken at control-flow statements, and (5) differ-
ences in terms of executed lines. For the last three measures, we
aggregate distances across tests similar to Xiong et al. [49], adding
the maximum distance among all previously passing test and the
average distance of all previously failing tests, with the intuition
that large changes even to a single passing test are undesirable,
whereas larger changes to failing tests are sometimes expected.
We rank all patches by distance, reporting those patches with the
smallest distance between patched and unpatched programs first.
A detailed description of the distance computations can be found
in the supplementary material.

6 EVALUATION

We evaluate our approach along multiple dimensions. First, central
to any automatic program repair tool is its ability to identify patches,
so we measure repair effectiveness in terms of the number and the
quality of repaired bugs:
RQ1: How effective our approach is in finding patches within a

large search space of fixing ingredients?
RQ2: To what extent do our generated patches overfit to the pro-

vided tests?
Our approach should benefit from increased edit expressiveness

without suffering much in terms of search effectiveness and easily
incorporate more fixing ingredients, hence:
RQ3: To what extent can our approach make use of different kinds

of fixing ingredients?
Another key benefit of a systematic search in a rich space of

fixing ingredients is the ability to find multi-edit patches. We expect
to find more multi-edit patches than prior approaches:
RQ4: How effective is our work in generating multi-edit patches?

Finally, enumerating all plausible patches opens new opportuni-
ties for selecting high-quality patches from a pool of many plausible
patches, hence:
RQ5: How effective is our patch ranking?

Where available, we compare our results with the state-of-the-
art approaches by taking numbers verbatim from prior work, be-
cause reproducing previous results can be expensive and time-
consuming [7]. Experimental conditions of prior work (e.g., fault lo-
calization and edit templates used) are different so numbers should
be compared with care. We report numbers from existing work
nonetheless to put our approach into context. Our experiment setup
and evaluation data are publicly available in the supplementary
material.

6.1 Experimental Setup

While the specific experimental design differs between research
questions, all research questions are evaluated on the same set of
579 bugs and with the same generated meta-programs.

Bugs analyzed. To enable comparison with other approaches, we
build our evaluation on 579 bugs in eight subject systems from two
commonly used benchmarks, characterized in Table 1. Each bug
consists of an implementation and a test suite in which at least one
test fails. The two benchmarks have very different characteristics,
allowing us to triangulate the evaluation results.

359

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 1: Evaluation subjects

Subject Description LOC Test LOC #Bugs #Tests

median median of 3 integers 78 130 57 13
smallest smallest of 4 integers 80 158 52 16
digits digits of an integer 83 153 75 16
grade compute letter grade 82 174 89 18
checksum checksum of a string 89 172 11 16
syllables count syllables 88 152 13 16

Math math library 85k 19k 106 3,602
Closure JavaScript compiler 90k 83k 176 7,927

LOC for IntroClassJava are counted using SLOCCount and averaged over all bugs. LOC
for Defects4J are taken from the original work [12]. #Bugs denote the total number of
bugs available in the datasets. #Tests denotes the number of test cases.

The first set of subject systems, drawn from the IntroClassJava
benchmark [9], is derived from student solutions to assignments in
an introductory programming course [38]. The small size of these
programs minimizes the impact of fault localization and allows us
to comprehensively evaluate our approach under different experi-
mental conditions; the simplicity of these programs also allows us
to often evaluate correctness of patches formally.

To evaluate our approach at a more realistic scale, we also an-
alyze 282 bugs from the Math and Closure open-source projects
in the Defects4J benchmark [12], broadly used in repair research
to evaluate effectiveness and scalability on real bugs [4, 11, 35, 48].
We limit our evaluation to the two largest subject systems in the
dataset, to balance between ability to compare to other reported
results and required engineering effort (wrt. environment barrier,
see Section 4.3) and evaluation cost.

Meta-Program Generation. To reduce nondeterminism and com-
putational effort, we generate one meta-program for each buggy
program and use it consistently in all experiments. We use all eight
edit templates (Section 3) and repeatedly apply edit templates at
all locations identified by the fault localization technique. In pro-
grams with very large numbers of possible edits, we generate edits
randomly until we reach 500 edits for IntroClassJava programs
and 5000 for the larger Defects4J programs.1 Generated edits are
then compiled individually and only compilable ones are merged
into the meta-program.

Threats to validity. We encountered technical issues with 98 out
of 282 Defects4J bugs, mostly due to unsupported API calls—a
challenge shared by semantics-based tools and research prototypes
of analysis tools in general, that can be addressed with more en-
gineering effort (cf. Sec. 4.3). Although VarFix did not produce
any results for these bugs, we do not exclude these bugs when we
report numbers from prior work. We conjecture that a more mature
variational execution engine would allow us to repair more bugs.

Randomness might affect several components of our experiment,
such as generating meta-programs, sampling edits for variational
execution, and genetic search of GenProg. To limit the impact of
randomness, we intentionally generate a large pool of applicable
edits when we generate meta-programs. We also take different
samples or seeds when applicable.

1We assign a 10 times lower chance to UOI and ABS edits because they can easily create
lots of edits around constants and numeric variables that are often of little value.

As with all existing approaches, our approach is evaluated on a
limited number of bugs and thus results must be generalized with
care. We expect that overfitting to the benchmark [7] is less of an
issue as we only use generic edit templates and focus on search
effectiveness.

6.2 RQ1 (Effectiveness) & RQ2 (Patch Quality)

The first obvious questions are how many bugs we can fix and how
good those patches are.

Experiment Setup: Finding Patches (RQ1). We run our approach on
each subject’s meta-program for up to 3 hours for IntroClassJava
and 6 hours for Defects4J, in line with recent prior work [7, 11, 35].
With this time budget, variational execution would typically not be
able to explore all combinations of edits, hence we carefully set a
number of options to limit the search discussed in Section 4.3. We
run multiple experiments with increasingly larger bounds until we
reach the time limit. For IntroClassJava, we bound the search to
combinations of at most 3 edits (cf. Sec. 4.3) for programs without
loops; in programs with loops (which are often copied by edits), so
we start with a bound of 2, and continue with 3 if there is time left.
For Math and Closure, where loops and recursions are common,
we start with bound 1 and all edits, then explore combinations of
500 randomly selected edits at a time with bound 2, and finally
combinations of 300 edits with bound 3. We continue sampling in
restricted edit spaces until the time limit is reached.

We experimentally compare our approach directly to GenProg’s
genetic-programming-based search strategy (which still provides a
competitive baseline despite 10 years of program-repair research [4,
11, 15, 35, 45, 48, 51, 53]), executing tests against one patch at a
time. For fairness, we exclude edit generation and compilation and
run tests against the same meta-program. We configure GenProg
to run up to 20 and 40 seeds for IntroClassJava and Defects4J
subjects respectively with the same 3h and 6h time limits and record
all patches found within the time limit rather than stopping after
the first plausible patch.

To complement the effectiveness comparison, we additional com-
pare efficiency by measuring the time it takes to generate the first
plausible patch. We configured GenProg to search more efficiently
by sampling 10% of the provided tests when validating patch can-
didates. Only when all the tests in the sample pass will GenProg
continue validation with the rest of the tests.

We set up the experiments in Docker containers and ran all per-
formance measurement on Amazon Fargate. Each Fargate instance
has 2 vCPU and 16 GB of RAM. Altogether, the experiments for
RQ1 took more than 5000 hours of CPU time.

For other repair approaches, we report previous findings from
the literature gathered on the same subjects with similar setups [4,
11, 35, 45, 48]. While not directly comparable, this provides a rea-
sonable context, without having to invest enormous additional
computational resources.

Experiment Setup: Evaluating Patch Quality (RQ2). To measure
patch quality, we aim to distinguish plausible patches that pass
the test suite (i.e., all results found by repair approaches) from correct

patches that actually meet the program specification (if available)
and would pass all possible tests. Since correctness is often difficult

360

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

to establish, we adopt the common notion of generalizable patches
that additionally pass a high-quality held-out test suite which was
not available to the repair approach—a pragmatic approach to eval-
uate patch quality common in repair research [15, 28, 38]. We use a
best effort approach to identify high-quality patches among all
plausible patches, judging correctness where feasible and general-
izability otherwise.

For IntroClassJava, the specifications are simple enough that
we can verify patch correctness formally via symbolic execution
for most of the bugs. We implemented a small symbolic-execution
engine to verify equivalence between a patched program and a
reference solution, considering only correct patches as high-quality
patches. For the digits subject, the frequent use of loops prevents full
verification, so we consider only symbolic inputs in the [−100, 100]
range and classify programs that are behaviorally equivalent to a
reference solution for those inputs as high-quality patches. For three
syllables and checksum bugs where advanced language features
prevented verification, we do not attempt to identify high-quality
patches.

For Defects4J, verification is infeasible, so we follow the stan-
dard practice to use an additional held-out test suite [15, 28, 38].
We reuse existing high-quality held-out tests that were previously
generated for evaluating patch quality [28] and classify a patch as a
high-quality patch if it passes all held-out tests. For 5 patched bugs,
we were not able to acquire held-out tests, but instead manually
examined each generated patch and classify it as high-quality only
if it is syntactically or semantically close to the developer patch.
We use the term semantically close to conservatively refer to cases
where programs are behaviorally similar but not strictly seman-
tically equivalent. One example is Math-50—while the developer
patch removes an if statement, our patch replaces the same if state-
ment with a code snippet that is unlikely to affect program state
(see supplementary material for code examples).

Results. VarFix is effective at finding high-quality patches in all
subject systems. For IntroClassJava, it significantly outperforms
all other approaches on the number of bugs for which it finds
plausible and high-quality patches, see Table 2 for details. VarFix
did not attempt repairing 38 out of 297 bugs that do not pass any
provided test, because fault localization (inherited from GenProg)
fails. As expected, bugs repaired by VarFix are a strict superset of
those repaired by GenProg in the same search space. Importantly,
VarFix produces high-quality patches for 40 bugs that no other
approach fixed.

For the much larger subjects in Defects4J, we observe similar
patterns though fewer patched bugs overall, shown in Table 3.
VarFix again strictly outperforms GenProg for searching in the
same search space in terms of bugs fixed with plausible and high-
quality patches; the effect is larger for Closure because the larger
test suite slows down GenProg’s search more. Other approaches
often repair a similar number or slightly more bugs, likely because
recent work uses more diverse or more tailored fixing ingredients.
For example, Hercules can fix Math-24 by inserting a method
call that is absent from the buggy source file, a fixing ingredient
not available in our evaluated implementation. In all cases where
VarFix fails to produce any patches, it is because VarFix exceeds
the time budget at higher search bounds (148 bugs) or because of

Table 2: Number of repaired bugs for IntroClass (high-

quality/plausible)

Subject VarFix GenProg CapGen S3 Nopol jMutRepair

median 23/32 13/18 8/- - 16 7
smallest 15/38 2/18 11/- 22/- 12 9
digits 22/30 16/26 3/- - 2 4
grade 4/4 4/4 3/- - 2 4
checksum 0/2 0/1 0/- - 0 0
syllables 0/1 0/1 0/- - 0 0

Total 64/107 35/68 25/- 22/- 32 24

A hyphen (-) denotes missing data. For VarFix, GenProg, CapGen, and S3, each cell shows the
number of bugs patched by high-quality/plausible patches. For Nopol and jMutRepair, each
cell shows the number of bugs patched by plausible patches since patch quality is not evalu-
ated [7].

Table 3: Number of repaired bugs for Defects4J (high-

quality/plausible)

Subject VarFix GenProg Hercules SimFix ssFix CapGen

Math 11/24 7/16 20/29 14/26 10/26 13/-
Closure† 6/11 0/1 8/13 5/7 2/11 -/-

Total 17/35 7/17 28/42 19/33 12/37 13/-

Each cell shows the number of bugs patched by high-quality/plausible patches. Numbers for
existing approaches are taken from the corresponding papers[4, 11, 35, 45, 48]. CapGen was
not evaluated on Closure and the paper only reports high-quality patches.
†: bugs Closure-62 and Closure-63 are the same. We count only one of them and manually
adjust numbers of other approaches for consistency.

0 5,000 10,000
VarFix

GenProg

(a) median

0 5,000
(b) smallest

0 1,000 2,000
VarFix

GenProg

(c) grade

0 5,000 10,000
(d) digits

1,000 2,000 3,000
VarFix

GenProg

(e) checksum

500 1,000 1,500
(f) syllables

0 5,000 10,000 15,000 20,000
VarFix

GenProg

(g) math

0 5,000 10,000 15,000 20,000
(h) closure

Figure 4: Efficiency comparison between VarFix and Gen-

Prog. In each box plot, we show the time taken to find the

first patch for all the bugs of the given subject. The horizon-

tal axis displays time in seconds.

technical limitations of the variational execution engine (98 bugs,
cf. Sec. 4.3). Importantly, VarFix can uniquely fix 7 bugs with high-
quality patches (4 for Math and 3 for Closure) not fixed by any
other approaches. We observed that VarFix can repair bugs that
existing approaches did not fix because our search space is more
expressive (i.e., we do not restrict the types of edits) and our search is
systematic with regard to the given search space (i.e., we do not use
heuristics to traverse the space). Interestingly, manual verification
of the 35 fixed bugs showed that VarFix found the actual developer

361

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

patch among all the patches in all the 9 cases where the needed
fixing ingredients were in the search space (in the other 26 cases, the
exact ingredients were not in the search space because of inaccurate
fault localization and limited edit templates).

In addition to patching more bugs than GenProg, VarFix also
finds vastly more plausible and high-quality patches per bug, often
more than 1000 patches per program and still dozens of patches
after minimization, as summarized in Tables 4 and 5 (for details
on individual bugs see supplementary material). This shows not
only plausible, but also high-quality patches are abundant, both for
tiny programs like the ones in IntroClassJava and larger ones
in Defects4J (in contrast to prior observations that found many
plausible but only few high-quality patches [19], possibly caused
by a less efficient search strategy).

In terms of search efficiency, VarFix tends to take slightly more
time than GenProg to find the first patch for IntroClassJava, as
shown in Figure 4. However, VarFix can often find many more
plausible patches at the same time as opposed to one at a time for
GenProg. For Defects4J, VarFix can search more efficiently than
GenProg because the overhead of variational execution is offset
by larger search spaces and more expensive test executions when
fixing bugs in large programs.

Overall, VarFix’s more effective search strictly outperforms Gen-

Prog in the same search space; it significantly outperforms prior work

on IntroClassJava and can uniquely fix 7 Defects4J bugs. It is

effective not only at finding plausible patches, but also at identify-

ing high-quality patches. Search efficiency of VarFix is on par with

GenProg despite a more heavyweight search, the cost of which can

be offset in large repair problems.

6.3 RQ3 (Fixing Ingredients)

To demonstrate VarFix’s ability to incorporate and take advantage
of different fixing ingredients, we explore it’s ability to fix bugs
with different ingredients.

Experiment Setup. We conduct two separate experiments: (1) For
IntroClassJava bugs, we compare VarFix’s ability to find patches
with different fixing ingredients. Specifically, we compare the re-
sults from RQ1 which used eight edit templates, with a separate
trial where only a subset of the edit templates was available, namely
the three original edit templates of GenProg that append, replace,
and delete statements. (2) For Defects4J bugs, we do not repeat
the entire experiment due to high computational costs, but instead
investigate whether failure to fix bugs can be explained by missing
fixing ingredients. To this end, we randomly selected 10 multi-edit
bugs that have not been fixed by any prior work (characteristics
shown in Tab. 6) and manually enhanced the meta-programs with
fixing ingredients of the developer’s patch. We specifically select
multi-edit bugs that need two or three edits to demonstrate the
ability to fix even challenging bugs when the fixing ingredients are
available. In both experiments, we run VarFix and GenProg other-
wise with the same settings as in RQ1 (same timeouts, maximum
edits considered, search bounds, etc).

Results. As expected, our results in Table 4 (columns Bug
pl/hq)

confirm thatVarFix can fixmore bugswhenmore fixing ingredients
are available, whereas GenProg benefits from additional fixing

ingredients to a much lesser degree. For example, VarFix can fix
23 instead of just 7 bugs when given more ingredients, whereas
GenProg improves only from 7 to 13; moreover, GenProg actually
fixed fewer smallest bugs when more ingredients were available,
indicating that search in a larger space is not necessarily more
effective. If comparing the number of patches found, rather than the
number of bugs fixed, we see more variance and fewer consistent
trends. We conjecture that, using more edit templates can increase
the likelihood of a bug being fixed, but can also decrease the number
of patches if certain important fixing ingredients are squeezed out
of the search space because of bounds on edit combinations and
the maximum number of edits considered, where some edits may
squeeze out others.

Our experiments with manually injected fixing ingredients in
10 challenging multi-edit Defects4J bugs show that VarFix can
find the developer patch within the search space for all 10 bugs
even when the needed edits span multiple methods and classes,
whereas GenProg can only fix 5 of those bugs within the same
time limit, as shown in Table 6. Interestingly, VarFix found patches
that contain fewer edits than the developer patch for 4 bugs and
patches that only use some of the developer ingredients for 2 bugs,
suggesting that developer patches sometimes contain edits that are
not necessary to pass all tests and that parts of developer patches
can be sometimes swapped out for other ingredients, i.e., one does
not need to have the exact ingredients in the search space.

In summary, we find that VarFix can effectively make use of extra

fixing ingredients in the search space, whereas the traditional search

strategy in GenProg more easily misses patches when searching in

larger search spaces.

6.4 RQ4 (Multi-Edit)

To understand the importance of VarFix’s ability to find multi-edit
patches, we break down found patches by the number of edits.

Experiment Setup. For each bug that VarFix can fix with high-
quality patches in RQ1, we recorded the minimum number of edits
needed for each found high-quality patch. We also count the total
number of patches grouped by their number of edits after filtering
down to minimized patches (cf. Sec. 5).

Results. While many bugs can be fixed with a single edit, the
number of bugs that can be fixed with high-quality patches in-
creases significantly if we search for combinations of up to three
edits, from 28 to 64 in IntroClassJava and from 13 to 17 in De-
fects4J, as shown in Tables 5 and 7. Many of the IntroClassJava
bugs that only VarFix can fix require multiple edits, which ex-
plains why VarFix can fix significantly more bugs than existing
approaches (cf. Tab. 2). For many IntroClassJava bugs, we actually
find a much larger number of (minimized) multi-edit patches than
single-edit patches. Code examples of generated multi-edit patches
are available in the supplementary material.

Overall, we find that VarFix’s search is effective at finding patches

with multiple edits and that this ability helps to fix more bugs.

6.5 RQ5 (Patch Ranking)

Finally, we explore VarFix’s ability to filter and rank patches to
suggest high-quality patches in a large pool of plausible patches.

362

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

Table 4: Number of patches generated for IntroClass using eight edit templates versus three edit templates (eight templates

/ three templates)

VarFix GenProg

Subject Bug𝑝𝑙 Bugℎ𝑞 Pl Mini-Pl HQ Mini-HQ Bug𝑝𝑙 Bugℎ𝑞 Pl Mini-Pl HQ Mini-HQ

median 32 / 18 23 / 7 3261 / 1944 42 / 34 3222 /4377 23 / 28 18 / 14 13 / 7 77 / 158 4 / 4 79 / 274 3 / 5
smallest 38 / 30 15 / 4 2423 / 3908 102 / 310 219 / 1908 7 / 44 18 / 20 2 / 3 42 / 74 3 / 3 3 / 23 1 / 1
digits 30 / 12 22 / 8 280 / 135 9 / 10 238 / 164 6 / 9 26 / 12 16 / 7 229 / 255 4 / 6 140 / 144 3 / 3
grade 4 / 0 4 / 0 102 / 0 4 / 0 99 / 0 4 / 0 4 / 0 4 / 0 44 / 0 2 / 0 41 / 0 2 / 0
checksum 2 / 2 - / - 4 / 4 4 / 4 - / - - / - 1 / 1 - / - 22 / 64 2 / 2 - / - - / -
syllables 1 / 1 - / - 105 / 12 7 / 12 - / - - / - 1 / 1 - / - 18 / 93 2 / 4 - / - - / -

Each cell contains two numbers: the left number uses all eight edit templates and the right number uses only three edit templates. Numbers on the right will be discussed in RQ3 (Fixing Ingredients). Bug𝑝𝑙
reports the number of bugs fixed by plausible patches. Bugℎ𝑞 reports the number of bugs fixed by high-quality patches. Pl reports the average number of plausible patches.Mini-Pl reports the average number
of minimized plausible patches. HQ reports the average number of high-quality patches. Mini-HQ reports the average number of minimized high-quality patches. A hyphen (-) indicates we cannot use our
symbolic execution engine to evaluate patch quality.

Table 5: Number of patches generated forMath andClosure

Plausible Patches High-Quality Patches

Bug Dev GenProg VarFix GenProg VarFix #Edits

Math-5 ✓ 1 1 1 1 1/0/0
Math-8 3 14 0 0
Math-22 ✓ 0 2 0 1 0/1/0
Math-24 0 1 0 0
Math-28 32 69 0 0
Math-29 1 4 0 0
Math-35 2 4 1 2 0/1/1
Math-40 1 9 0 0
Math-49 5 6 0 0
Math-50 ✗ 11 30 7 16 16/0/0
Math-53 ✓ 2 2 2 2 2/0/0
Math-56 0 3 - -
Math-62 0 3 0 3 0/3/0
Math-65 1 1 - -
Math-70 ✓ 3 3 2 2 2/0/0
Math-73 0 2 0 0
Math-80 0 6 0 0
Math-81 0 19 0 1 1/0/0
Math-82 ✓ 1 6 1 6 4/2/0
Math-84 4 5 0 0
Math-85 ✓ 11 28 2 4 2/2/0
Math-88 0 1 0 1 0/0/1
Math-95 10 13 0 0
Math-96 1 1 - -
Closure-11 ✗ 0 1 0 1 1/0/0
Closure-13 ✗ 0 28 0 27 27/0/0
Closure-19 0 5 0 0
Closure-21 0 78 0 0
Closure-22 0 97 0 0
Closure-62∗ ✓ 0 2 0 2 2/0/0
Closure-63∗ ✓ 0 2 0 2 2/0/0
Closure-66 0 8 0 0
Closure-73 ✓ 0 1 0 1 1/0/0
Closure-86 ✓ 0 1 0 1 1/0/0
Closure-126 ✗ 4 9 0 0
Closure-161 ✗ 0 1 0 1 1/0/0

Dev denotes developer patch. ✓ denotes that VarFix found the developer patch. ✗ means the
developer patch can, in theory, be generated by our edit templates, but the exact fixing ingredients
are missing in the meta-programs due to inaccurate fault localization. An empty cell means the
developer patch can not be generated by our edit templates.
#Edits column breaks downVarFix’s high-quality patches (second to last column) by the number
of composing edits, from 1 edit to 3 edits.
Closure-62 and Closure-63 are duplicate. We show them in this table for consistency with prior
work, but only count one of them when we report repaired bug counts [35].

Experiment Setup. We experiment with IntroClassJava patches
found in RQ1, skipping Defects4J patches, because in most cases
there are too few patch candidates to make ranking interesting or
necessary.

Table 6: Analyzed bugs withmanually encoded fix-

ing ingredients

Bug Edits Methods Classes VarFix GenProg

Math-1 2 2 2 ✓ ✓
Math-26 2 1 1 ✓ ✓
Math-52 3 1 1 ✓ ✓
Math-83 3 2 1 ✓ ✗
Math-86 2 1 1 ✓ ✓
Closure-7 2 1 1 ✓ ✗
Closure-9 2 2 2 ✓ ✓
Closure-27 3 2 1 ✓ ✗
Closure-72 2 2 2 ✓ ✗
Closure-75 2 2 1 ✓ ✗

Edits denotes the number edits in the developer patch,Methods the number of meth-
ods modified, and Classes the number of classes modified in the developer patch.

Table 7: VarFix patches for IntroClassJava by

number of edits

Patched By Minim. High-Qual. Patches

Subject Bugℎ𝑞 1E 2E 3E Total 1E 2E 3E

median 23 7 14 18 537 18 87 432
smallest 15 1 3 14 116 1 9 106
digits 22 16 22 2 135 29 89 17
grade 4 4 2 0 18 10 8 0

Bugℎ𝑞 denotes the number of bugs that can be fixed by high-quality patches. 1E, 2E,
3E represents one-edit, two-edit, three-edit patch, respectively. We omit checksum
and syllables as we cannot verify them with symbolic execution due to advanced
language features used, as discussed in the experiment setup of RQ2.

For all IntroClassJava patches found in RQ1, we compare the
number of patches before and after minimization. Subsequently, we
rank the minimized patches to measure where high-quality patches
are ranked. Among the 64 bugs with at least one high-quality patch,
we analyze the 24 bugs that have at least one plausible but incorrect
patch, because ranking a pool of all high-quality patches is not
interesting. We report the position of the highest-ranked high-

quality patch.We report ranking results separately for the 5 ranking
criteria introduced in Section 5.

Results. As expected the number of minimized patches is much

smaller than the number of all patches found, often by two orders of
magnitude, as shown in Table 4. Interestingly, patch minimization
reduced patch quality for a few patches, where the test suite still
passes after removing an edit from a high-quality patch, but that

363

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 8: Patch ranking results (excerpt)

Bug Mini. Pl.
Patches

Mini. HQ.
Patches

AST Leven. State CF Line

m-1bf7-03 111 3 48 54 3 8 2
m-317a-02 154 150 1 1 1 1 1
m-6e46-03 52 4 27 21 3 6 2
s-3b23-08 92 2 4 4 17 35 9
. . . (20 more in the supplementary material)

Top 1 4 4 6 5 6
Top 5 10 10 14 7 16
Top 10 13 13 16 14 23

Numbers in the last 5 columns denote the rank of the first correct patch in the ranking: AST
denotes ranking based on edit distance, Leven. based on Levenshtein distance, State based on
state differences in assignments, CF based on branch differences in control-flow statements, and
Line based on differences in executed lines.

reduced patch no longer generalizes. That is, an edit is needed to
repair the bug that is indistinguishable from the test suite’s perspec-
tive. Given that these cases are very rare, we expect that the benefits
of having orders of magnitude fewer patch candidates outweigh
the rare drawback of losing a correct patch through minimization.

While none of our ranking heuristics can reliably rank high-
quality patches always in the first position, some heuristics can
rank high-quality patches in the top 10 patches for most bugs
and even within the top 5 patches for many. Ranking based on
comparing executed statements, similar to prior work [49], seems
to be the most promising ranking strategy. While more research
on patch ranking is needed (potentially exploring other measures
and combinations of measures), we argue that having to inspect 5
to 10 patches among hundreds (or thousands if not minimized) is a
promising starting point for a practical setting.

In summary, filtering by minimization reduces the number of

plausible patches by orders of magnitude without much loss in quality

and patch ranking can usually report correct patches among the 10

highest-ranked results.

7 RELATEDWORK

We already discussed general trends and tradeoffs in program repair
in Section 2, focusing on pros and cons of different search strate-

gies. A recent comprehensive survey [27] provides an excellent
overview of the field. Here, we focus on details related to technical
considerations of our approach.

Patch quality. The tendency of automated repair approaches to
overfit patches to the test suite has received extensive attention [15,
27, 38]. There is little agreement on how to best measure patch
quality or correctness. Commonly patches are compared against
developer patches [11, 18, 25, 35, 45], but our results show that there
are often many different patches for a bug that are all semantically
equivalent but often syntactically different from the developer patch.
Another common strategy is to evaluate patches with held-out
tests [15, 28, 38], which we adopt in this work for patches we
cannot formally verify against a reference implementation.

Multi-edit patches. Empirical studies of developer patches have
shown that multi-edit patches are common [12, 54]. As discussed,
while most repair approaches can theoretically find multi-edit
patches, they often struggle to find them in large search spaces.

We are aware of only two approaches that specifically target this
problem: Angelix can target multiple suspicious expressions at the
same time by using symbolic execution to capture inter-location
dependencies as constraints, but often require multiple suspicious
locations to be close for symbolic execution to be effective [25].
Hercules exploits the fact that similar code changes are often made
to similar locations (termed sibling relationship) to pro-actively de-
rive similar edits at multiple locations at the same time [35]. In
contrast, when variational execution succeeds, our approach can
efficiently search for multi-edit changes even if the locations are
scattered and ingredients are different.

Patch ranking. Many existing program repair approaches guide
the search to favor certain kinds of patches, prioritizing those that
are more likely to pass all tests, or have higher quality [5, 15, 17,
18, 20, 24, 25, 44, 45]. To rank patch candidates, existing approaches
exploit different information, such as the number of passing and fail-
ing tests [17, 44], syntactic and semantic distance to the original pro-
gram [5, 15, 24, 25], and probabilistic models learnt from existing hu-
man patches [16, 20, 45, 50]. In contrast, we rank plausible patches af-
ter the search instead of ranking patch candidates during the search.
We additionally use runtime information from test executions for
ranking and show that it outperforms edit-distance based measures.

Closest to our ranking approach, JAID also finds multiple plau-
sible patches and rank them, but based on fault localization sus-
piciousness [4]. Our ranking strategy is inspired by Xiong et al.
[49] who attempt to classify whether found patches are correct by
comparing their execution traces.

8 CONCLUSIONS

Existing approaches to automatic program repair essentially solve a
search problem inwhich a trade-off ismade between edit expressive-
ness and search effectiveness. While most existing work prioritizes
one or the other, our work uses variational execution to effectively
navigate a large search space of diverse fixing ingredients. We evalu-
ate our work on IntroClassJava and Defects4J, showing that sys-
tematically exploring the search space of program repair has numer-
ous benefits comparing to prior work, including effectively leverag-
ing fixing ingredients to fix more bugs, systematically finding more
high-quality patches and multi-edit patches, and comprehensively
revealing dynamic information that is useful for distinguishing high-
quality patches from a larger pool of plausible patches.We hope that
our work can inspire future research on effective search strategies,
patch ranking, patch quality and multi-edit patch generation.

ACKNOWLEDGMENTS

This work has been supported by NSF awards 1552944 and 1750116.
Priscila participated in this work via the NSF-funded Research
Experiences for Undergraduates in Software Engineering (REU-SE)
program.We are grateful to all who provided feedback on this work,
including Abhik Roychoudhury, Heather Miller, the anonymous
reviewers, and the audiences of early presentations of this work.

SUPPLEMENTARY MATERIAL

Supplementary material of this work is available online at https:
//chupanw.github.io/varfix-supplement/.

364

https://chupanw.github.io/varfix-supplement/
https://chupanw.github.io/varfix-supplement/

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues

REFERENCES

[1] Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic
Information Flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’12). ACM, New York,
NY, USA, 165–178. https://doi.org/10.1145/2103656.2103677

[2] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama.
2013. Faceted Execution of Policy-Agnostic Programs. In Proceedings of the Eighth
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security

(PLAS ’13). ACM, New York, NY, USA, 15–26. https://doi.org/10.1145/2465106.
2465121

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proceedings of the ACM on Programming

Languages 3, OOPSLA (Oct. 2019), 159:1–159:27. https://doi.org/10.1145/3360585
[4] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-Based Program Re-

pair without the Contracts. In Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2017). IEEE Press, Urbana-
Champaign, IL, USA, 637–647.

[5] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification, Swarat
Chaudhuri and Azadeh Farzan (Eds.). Vol. 9780. Springer International Publishing,
Cham, 383–401. https://doi.org/10.1007/978-3-319-41540-6_21

[6] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. 2016. FeaturedModel-BasedMutation Analysis.
In Proceedings of the 38th International Conference on Software Engineering (ICSE

’16). ACM, New York, NY, USA, 655–666. https://doi.org/10.1145/2884781.2884821
[7] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.

Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 2019 27th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering - ESEC/FSE 2019. ACM Press, Tallinn,
Estonia, 302–313. https://doi.org/10.1145/3338906.3338911

[8] Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. In Proceedings of the 11th International

Workshop on Automation of Software Test - AST ’16. ACM Press, Austin, Texas,
85–91. https://doi.org/10.1145/2896921.2896931

[9] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A Benchmark of

297 Small and Buggy Java Programs. Technical Report. University of Lille.
[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In
Proceedings of the International Conference on Automated Software Engineering.
Association for Computing Machinery, Västeras, Sweden, 313–324. https://doi.
org/10.1145/2642937.2642982

[11] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2018). Association for Computing Machinery, New
York, NY, USA, 298–309. https://doi.org/10.1145/3213846.3213871

[12] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis

(ISSTA 2014). ACM, New York, NY, USA, 437–440. https://doi.org/10.1145/2610384.
2628055

[13] Christian Kern and Javier Esparza. 2010. Automatic Error Correction of Java
Programs. In Proceedings of the 15th International Conference on Formal Methods

for Industrial Critical Systems (FMICS’10). Springer-Verlag, Berlin, Heidelberg,
67–81.

[14] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In 2013 35th Interna-

tional Conference on Software Engineering (ICSE). IEEE, San Francisco, CA, USA,
802–811. https://doi.org/10.1109/ICSE.2013.6606626

[15] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming
by Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering - ESEC/FSE 2017. ACM Press, Paderborn, Germany, 593–604.
https://doi.org/10.1145/3106237.3106309

[16] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER). IEEE, Suita, 213–224. https://doi.org/10.1109/SANER.
2016.76

[17] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions

on Software Engineering 38, 1 (Jan. 2012), 54–72. https://doi.org/10.1109/TSE.
2011.104

[18] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering - ESEC/FSE 2015. ACM Press, Bergamo, Italy, 166–178. https://doi.
org/10.1145/2786805.2786811

[19] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate
and Validate Patch Generation Systems. In Proceedings of the 38th International

Conference on Software Engineering - ICSE ’16. ACM Press, Austin, Texas, 702–713.
https://doi.org/10.1145/2884781.2884872

[20] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Cor-
rect Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages - POPL 2016. ACM Press, St. Petersburg,
FL, USA, 298–312. https://doi.org/10.1145/2837614.2837617

[21] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and A.
Scott. 2019. SapFix: Automated End-to-End Repair at Scale. In Proceedings of the

41st International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP ’19). IEEE Press, Montreal, Quebec, Canada, 269–278. https:
//doi.org/10.1109/ICSE-SEIP.2019.00039

[22] Matias Martinez and Martin Monperrus. 2019. Astor: Exploring the Design Space
of Generate-and-Validate Program Repair beyond GenProg. Journal of Systems

and Software 151 (May 2019), 65–80. https://doi.org/10.1016/j.jss.2019.01.069
arXiv:1802.03365

[23] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. 2018.
Test-Equivalence Analysis for Automatic Patch Generation. ACM Trans. Softw.

Eng. Methodol. 27, 4, Article 15 (Oct. 2018), 37 pages. https://doi.org/10.1145/
3241980

[24] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for Simple Program Repairs. In Proceedings of the 37th International Conference on

Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Florence, Italy, 448–458.
[25] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable

Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the

38th International Conference on Software Engineering - ICSE ’16. ACM Press,
Austin, Texas, 691–701. https://doi.org/10.1145/2884781.2884807

[26] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. 2016. On Essential Configuration Complexity: Measuring Interactions in
Highly-Configurable Systems. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE 2016). ACM, New York, NY,
USA, 483–494. https://doi.org/10.1145/2970276.2970322

[27] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. Comput.

Surveys 51, 1 (Jan. 2018), 1–24. https://doi.org/10.1145/3105906
[28] Manish Motwani, Mauricio Soto, Yuriy Brun, Rene Just, and Claire Le Goues. 2020.

Quality of Automated Program Repair on Real-World Defects. IEEE Transactions

on Software Engineering (2020), 1–1. https://doi.org/10.1109/TSE.2020.2998785
[29] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring

Variability-Aware Execution for Testing Plugin-Based Web Applications. In Pro-

ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
ACM, New York, NY, USA, 907–918. https://doi.org/10.1145/2568225.2568300

[30] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. 1996. An Experimental Determination of Sufficient Mutant Operators. ACM
Transactions on Software Engineering and Methodology 5, 2 (April 1996), 99–118.
https://doi.org/10.1145/227607.227610

[31] A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. 1993. An Experi-
mental Evaluation of Selective Mutation. In Proceedings of 1993 15th Interna-

tional Conference on Software Engineering. IEEE, Baltimore, MD, USA, 100–107.
https://doi.org/10.1109/ICSE.1993.346062

[32] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
Strength of Random Search on Automated Program Repair. In Proceedings of the

36th International Conference on Software Engineering (ICSE 2014). Association for
Computing Machinery, New York, NY, USA, 254–265. https://doi.org/10.1145/
2568225.2568254

[33] RTI. 2002. The Economic Impacts of Inadequate Infrastructure for Software Testing.
Technical Report. National Institute of Standards and Technology.

[34] Stuart Russell and Peter Norvig. 2002. Artificial Intelligence: A Modern Approach.
[35] Seemanta Saha, Ripon k. Saha, and Mukul r. Prasad. 2019. Harnessing Evolution

for Multi-Hunk Program Repair. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 13–24. https:
//doi.org/10.1109/ICSE.2019.00020

[36] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-Path Symbolic Execution Using Value Summaries. In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015.
ACM Press, Bergamo, Italy, 842–853. https://doi.org/10.1145/2786805.2786830

[37] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
Feedback Generation for Introductory Programming Assignments. ACM SIG-

PLAN Notices 48, 6 (June 2013), 15–26. https://doi.org/10.1145/2499370.2462195
[38] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the

Cure Worse than the Disease? Overfitting in Automated Program Repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering

- ESEC/FSE 2015. ACM Press, Bergamo, Italy, 532–543. https://doi.org/10.1145/
2786805.2786825

[39] squaresLab. 2021. genprog4java. https://github.com/squaresLab/genprog4java.
[40] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. 2016.

Anti-Patterns in Search-Based Program Repair. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering

365

https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/2465106.2465121
https://doi.org/10.1145/2465106.2465121
https://doi.org/10.1145/3360585
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1016/j.jss.2019.01.069
https://arxiv.org/abs/1802.03365
https://doi.org/10.1145/3241980
https://doi.org/10.1145/3241980
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2970276.2970322
https://doi.org/10.1145/3105906
https://doi.org/10.1109/TSE.2020.2998785
https://doi.org/10.1145/2568225.2568300
https://doi.org/10.1145/227607.227610
https://doi.org/10.1109/ICSE.1993.346062
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://github.com/squaresLab/genprog4java

VarFix: Balancing Edit Expressiveness and Search Effectiveness in Automated Program Repair ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(FSE 2016). Association for Computing Machinery, New York, NY, USA, 727–738.
https://doi.org/10.1145/2950290.2950295

[41] Tricentis. 2018. Tricentis Software Fail Watch Finds 3.6 Billion People Affected
and $1.7 Trillion Revenue Lost by Software Failures Last Year. Available
at https://www.globenewswire.com/news-release/2018/01/24/1304535/0/en/
Tricentis-Software-Fail-Watch-Finds-3-6-Billion-People-Affected-and-1-7-
Trillion-Revenue-Lost-by-Software-Failures-Last-Year.html (2021/06/18).

[42] Alexander von Rhein, Sven Apel, and Franco Raimondi. 2011. Introducing Binary
Decision Diagrams in the Explicit-State Verification of Java Code. In Proc. Java

Pathfinder Workshop. 82.
[43] WestleyWeimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging Program

Equivalence for Adaptive ProgramRepair: Models and First Results. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering

(ASE’13). IEEE Press, Silicon Valley, CA, USA, 356–366. https://doi.org/10.1109/
ASE.2013.6693094

[44] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the

31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, Washington, DC, USA, 364–374. https://doi.org/10.1109/ICSE.2009.
5070536

[45] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-

ceedings of the 40th International Conference on Software Engineering - ICSE ’18.
ACM Press, Gothenburg, Sweden, 1–11. https://doi.org/10.1145/3180155.3180233

[46] Chu-Pan Wong, Jens Meinicke, Leo Chen, João P. Diniz, Christian Kästner, and
Eduardo Figueiredo. 2020. Efficiently Finding Higher-Order Mutants. In Proceed-

ings of the 28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. ACM, Virtual Event
USA, 1165–1177. https://doi.org/10.1145/3368089.3409713

[47] Chu-PanWong, Jens Meinicke, Lukas Lazarek, and Christian Kästner. 2018. Faster
Variational Execution with Transparent Bytecode Transformation. Proc. ACM
Program. Lang. 2, OOPSLA (Oct. 2018), 117:1–117:30. https://doi.org/10.1145/

3276487
[48] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-Related Code for Automated

Program Repair. In Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering (ASE 2017). IEEE Press, Urbana-Champaign, IL,
USA, 660–670.

[49] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying Patch Correctness in Test-Based Program Repair. In Proceedings of

the 40th International Conference on Software Engineering. ACM, Gothenburg
Sweden, 789–799. https://doi.org/10.1145/3180155.3180182

[50] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In Proceedings

of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,
Buenos Aires, Argentina, 416–426. https://doi.org/10.1109/ICSE.2017.45

[51] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs.
IEEE Transactions on Software Engineering 43, 1 (Jan. 2017), 34–55. https:
//doi.org/10.1109/TSE.2016.2560811

[52] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, Dynamic Information Flow for
Database-Backed Applications. In Proceedings of the 37th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI ’16). ACM,
New York, NY, USA, 631–647. https://doi.org/10.1145/2908080.2908098

[53] Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming. IEEE Transactions on Software

Engineering 46, 10 (Oct. 2020), 1040–1067. https://doi.org/10.1109/TSE.2018.
2874648

[54] Hao Zhong and Zhendong Su. 2015. An Empirical Study on Real Bug Fixes. In
Proceedings of the 37th International Conference on Software Engineering - Volume

1 (ICSE ’15). IEEE, Piscataway, NJ, USA, 913–923. https://doi.org/10.1109/ICSE.
2015.101

366

https://doi.org/10.1145/2950290.2950295
https://www.globenewswire.com/news-release/2018/01/24/1304535/0/en/Tricentis-Software-Fail-Watch-Finds-3-6-Billion-People-Affected-and-1-7-Trillion-Revenue-Lost-by-Software-Failures-Last-Year.html
https://www.globenewswire.com/news-release/2018/01/24/1304535/0/en/Tricentis-Software-Fail-Watch-Finds-3-6-Billion-People-Affected-and-1-7-Trillion-Revenue-Lost-by-Software-Failures-Last-Year.html
https://www.globenewswire.com/news-release/2018/01/24/1304535/0/en/Tricentis-Software-Fail-Watch-Finds-3-6-Billion-People-Affected-and-1-7-Trillion-Revenue-Lost-by-Software-Failures-Last-Year.html
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3368089.3409713
https://doi.org/10.1145/3276487
https://doi.org/10.1145/3276487
https://doi.org/10.1145/3180155.3180182
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/2908080.2908098
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/ICSE.2015.101
https://doi.org/10.1109/ICSE.2015.101

	Abstract
	1 Introduction
	2 Repair challenges
	2.1 Edit Expressiveness vs. Search Effectiveness
	2.2 Open Challenges

	3 Meta-Program Generation
	4 Systematic Search
	4.1 Background on Variational Execution
	4.2 Using Variational Execution to Find Plausible Patches
	4.3 Implementation and Limitations

	5 Patch Filtering and Ranking
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1 (Effectiveness) & RQ2 (Patch Quality)
	6.3 RQ3 (Fixing Ingredients)
	6.4 RQ4 (Multi-Edit)
	6.5 RQ5 (Patch Ranking)

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

