
3736 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

CirFix: Automated Hardware Repair and its
Real-World Applications

Priscila Santiesteban , Yu Huang , Westley Weimer , and Hammad Ahmad

Abstract—This article presents CirFix, a framework for au-
tomatically repairing defects in hardware designs implemented
in languages like Verilog. We propose a novel fault localization
approach based on assignments to wires and registers, and a fit-
ness function tailored to the hardware domain to bridge the gap
between software-level automated program repair and hardware
descriptions. We also present a benchmark suite of 32 defect sce-
narios corresponding to a variety of hardware projects. Overall,
CirFix produces plausible repairs for 21/32 and correct repairs for
16/32 of the defect scenarios. Additionally, we evaluate CirFix’s
fault localization independently through a human study (n = 41),
and find that the approach may be a beneficial debugging aid for
complex multi-line hardware defects.

Index Terms—Circuit designs, automated repair, empirical
study, user study.

I. INTRODUCTION

R ECENT increases in the complexity of hardware designs
have challenged the ability of developers to find and repair

defects in circuit descriptions [1]. While significant effort has
been devoted to efficiently verifying functional correctness in
hardware design descriptions, relatively little work has been
done in patching defects in such descriptions automatically. By
and large, debugging and repairing hardware designs remains
a very expensive and time-consuming task [2]. Indeed, recent
functional and security vulnerabilities due to defects at the hard-
ware design level have led to expensive consequences [3], [4],
[5]. To reduce the cost and improve the maintenance of hardware
designs, a solution needs to not only precisely identify sources
of defects in real-world off-the-shelf hardware descriptions,
but also automatically produce repairs implementing correct
functionality of the circuit designs that can then be shown to de-
velopers for validation before moving on to the synthesis phase.

Manuscript received 5 August 2022; revised 1 April 2023; accepted 6 April
2023. Date of publication 25 April 2023; date of current version 18 July 2023.
This work was partially supported in part by the NSF under Grant 1908633 and
in part by AFRL under Grant 2211749. Recommended for acceptance by M.
Pradel. (Corresponding author: Priscila Santiesteban.)

This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by the University
of Michigan Health Sciences and Behavioral Institutional Review Boards under
Application No. HUM00199335.

Priscila Santiesteban, Westley Weimer, and Hammad Ahmad are with the
Computer Science and Engineering, University of Michigan, Ann Arbor,
MI 48104 USA (e-mail: pasanti@umich.edu; weimerw@umich.edu; ham-
mada@umich.edu).

Yu Huang is with the Computer Science, Vanderbilt University, Nashville,
TN 37235 USA (e-mail: yu.huang@vanderbilt.edu).

Digital Object Identifier 10.1109/TSE.2023.3269899

Additionally, we desire a solution that applies directly to both
the behavioral aspects (i.e., higher-level descriptions of circuit
functionality) and the register-transfer level (RTL) aspects (i.e.,
lower-level descriptions) of circuit designs, and makes use of
readily-available resources that are part of hardware design to
validate proposed repairs.

Previous work has attempted to address this problem but
may not satisfy all of these characteristics of a desired solution.
For instance, some techniques automatically localize defects in
design source code but suffer from high false positive rates [6],
[7].

Other approaches for automatic error diagnosis and correction
require formal specifications to conduct design verification [8],
which usually do not scale to large designs.

Furthermore, previous work does not operate on behavioral-
level descriptions of hardware circuits [9], [10]. On the other
hand, in the realm of software, significant research effort focuses
on repairing bugs automatically [11], [12], [13]. Automated
program repair (APR) algorithms fix defects in software by
producing patches that pass all test cases while retaining required
functionality. Traditional APR for software employs fault local-
ization techniques to implicate faulty code, and such techniques
are often crucial to the success of program repair. Interest in
applying software APR methods to hardware has been seen in
the literature. Some methods for localizing hardware errors focus
on applying a model-based diagnosis paradigm and making use
of structure and behavior for software debugging [14], [15], [16],
[17].

While both software programs and hardware description lan-
guages (HDLs) share programming concepts like expressions,
statements, and control structures, suggesting the possibility of
repurposing software repair techniques to hardware designs, we
highlight two key differences between the two domains: (1) HDL
designs are inherently parallel and often include non-sequential
statements, since separate portions of hardware can operate
simultaneously. While some conventional languages, such as
Javascript, have support for parallelism, APR typically focuses
on software written in languages such as C and Java that are
generally based around a serial execution model. (2) Software
programs usually use test cases to evaluate functional correct-
ness, where individual test cases may pass or fail depending on
the quality of the software. HDL designs, on the other hand,
use testbenches [18], which are programs with documented and
repeatable sets of stimuli, to simulate behaviors of a device under
test (DUT). In both academia and industry, the majority of digital
hardware design is done using such HDLs.

0098-5589 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3737

We present two key insights to bridge the gap between
software repair techniques and hardware designs. We first
hypothesize that while traditional spectrum-based fault localiza-
tion approaches do not apply to hardware designs that feature
a more parallel structure [19], dataflow-based fault localization
(e.g., [20]) approaches work well in this domain. Second, we
hypothesize that a traditional hardware testbench can be instru-
mented to admit observations for candidate patches that guide
the search for APR.

Leveraging these insights, we present CirFix, a framework
for automatically repairing defects in hardware designs im-
plemented in languages like Verilog, one of the most popular
HDLs [21]. CirFix uses genetic programming (GP), an iterative
stochastic search technique, to find candidate repairs for defects
in hardware designs. CirFix also makes use of readily-available
artifacts in the hardware design process (e.g., testbenches, sim-
ulation environments) to diagnose and repair defects in a circuit
description. We propose an approach to guide the search for a re-
pair by instrumenting hardware testbenches to record the values
of output wires at specified time intervals during a simulation
of the circuit design. Our novel fault localization utilizes the
simulations to assign blame to incorrect wires and registers.1

CirFix then performs a bit-level comparison of output wires
against information for expected behavior to assess functional
correctness of candidate repairs. CirFix employs a fixed point
analysis of assignments made to internal registers and output
wires to implicate statements and reduce the search space,
enabling our approach to scale to large circuit designs in industry.

We present a benchmark suite of 32 defect scenarios [22]
based on three hardware experts — two from industry and one
from academia — asked to transplant bugs they observed in
real life into 11 different Verilog projects. CirFix can produce
plausible repairs for 21 out of the 32 Verilog defect scenarios
within reasonable resource bounds, of which 16 are deemed
correct upon manual inspection.

Furthermore, we evaluate the usability of our novel fault
localization algorithm independent of the automated repair con-
text through a human study in which n = 41 humans assess its
quality and usefulness. We find a statistically-significant pref-
erence (p = 0.003) for CirFix fault localization as a debugging
aid in fixing multi-line hardware defects, primarily in student
applications (p = 0.01).

The main contributions of this paper are:
� CirFix, a repair algorithm for hardware designs.
� A novel dataflow-based fault localization approach for

HDL descriptions to implicate faulty design code.
� A novel approach to guide the search for a hardware design

repair that is compatible with the testbench-based hardware
testing process.

� A new benchmark suite of 32 scenarios, based on propri-
etary bugs but available in 11 open projects.

� A systematic evaluation of CirFix on our benchmark suite.
CirFix was able to correctly repair 16 out of the 32 Verilog
defects under consideration.

1In HDLs like Verilog, wire elements are used to connect input and output
ports of a module instantiation, while registers stores values.

� A human study using CirFix’s fault localization algorithm
as a debugging aid on real-world and student applications.
We observe statistically significant preference using the
support for multi-line defects (p = .003) in student appli-
cations (p = 0.01).

Additions Relative to Prior Paper: This article extends our
ASPLOS 2022 paper [23], but also includes (1) a new human
study of the proposed fault localization algorithm for hardware
designs, (2) an independent assessment of correctness of the
produced CirFix patches from an expert team [24], [25], [26],
[27], [28], (3) an investigation of fault localization sensitivity
and, (4) a discussion of the degree to which CirFix interacts with
the synthesizability or timing of a design. In Section IV-C we
introduce a human study to investigate the incremental benefit of
our fault localization in various Verilog debugging scenarios. In
Section V-A we report an assessment of CirFix patches along an
orthogonal evaluation criterion from an independent expert APR
team. In Section VI we analyze the results in terms of objective
performance and subjective judgements. In Section V-A, we
evaluate CirFix’s repair performance by conducting a targeted
experiment that controls the quality of initially-provided infor-
mation. Lastly, we discuss synthesizability and timing of repairs
in Section VII.

II. MOTIVATING EXAMPLE

In this section, we use an example defect from a faulty
4-bit counter with an overflow bit, implemented in Verilog,
to motivate the fault localization and candidate evaluation ap-
proaches used by CirFix. The main block of the source code
is shown in Fig. 1(a), with the corresponding testbench in
Fig. 1(b). The circuit design uses wires enable and reset
to increment (lines 35–37) and reset (lines 30–33) the counter
respectively. Incrementing the counter when it has a binary value
of 4’b1111 results in the overflow bit being set to true (lines
39–41). This implementation incorrectly manages the overflow
bit: the if-statement at line 30 is missing an assignment that resets
overflow_out. Such defects can have serious consequences
— integer overflow errors can be leveraged into significant
security exploits [29].

For the purposes of this work, there are two key hardware
design concepts that we highlight for a general audience: circuit
synchronization and parallelism.

Circuit Synchronization: The main block of the circuit design
code shows an always block (line 27, Fig. 1(a)) that executes re-
peatedly until the simulation stops. The execution of such blocks
can only be triggered by changes to wires in the sensitivity list
that follows the always keyword. Nearly every digital circuit
design includes a clock signal (line 50, Fig. 1(b)) that oscillates
between a high and a low state (denoted by events posedge
and negedge respectively); circuits rely on clock signals to
know when and/or how to execute their programmed actions. A
clock cycle is the period of time it takes for the clock signal to
oscillate from high to low and back to a high state. For the 4-bit
counter in Fig. 1(a), the wire clk (denoting the clock signal)
is the only wire in the always block’s sensitivity list (see line
27), and lines 28–42 are executed every time that wire reaches a

3738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

Fig. 1. A 4-bit counter with an overflow error in Verilog.

high state. Note that there also exists a notion of asynchronous
designs where the state of the system can change in response
to changing inputs. However, given the increased complexity
associated with asynchronous designs, most hardware designs
tend to be synchronous in nature [30].

Parallelism: A key property of HDL designs not immediately
apparent in Fig. 1 is that parts of the design code typically execute
in parallel. When a design is realized into actual hardware,
individual components run all the time. Indeed, every statement
in a Verilog design not inside an explicit sequential block of
code exhibits concurrency. For instance, for the 4-bit counter
in Fig. 1(a), an implementation managing the overflow bit cor-
rectly would include two assignments to counter_out and
overflow_out (on lines 31 and 32 respectively) that happen
at the same time when reset is true.

To automatically repair the design code in Fig. 1(a), CirFix
needs to first answer, for the original design and each candidate
repair: what part of the circuit, if any, is behaving incorrectly?
Unfortunately, standard spectrum-based fault localization tools
commonly used by APR for software do not work for HDL
designs that exhibit parallelism. To overcome this challenge, we
propose a novel fault localization approach based on assign-
ments to wires and registers. We first instrument the existing
testbench to record output values at given time intervals. This
instrumented testbench, when used to simulate the design, re-
ports the output values from the circuit, which can be compared
against expected output. Any mismatch between expected and
actual output serves as the starting point for our fault localization.
For the 4-bit counter in Fig. 1, the testbench waits for 10 units

of time before sending the reset signal (line 65, Fig. 1(b) —
cf. stimuli for unit tests in software). The procedural block
within the testbench that was waiting on the reset signal (line 55,
Fig. 1(b)) then sets reset to true upon the next falling edge of
the clock signal. This causes any subsequent executions of the
if-statement that resets the wires (line 30, Fig. 1(a)) to evaluate
the true branch, after which the counter is reset. A correct design
should also reset the overflow bit: at this point, the expected
behavior requires overflow_out to be 0, while the actual
value recorded by our instrumented testbench is x (the Verilog
representation an uninitialized or unknown logic value). This
causes overflow_out to be implicated for fault localization,
and CirFix focuses repair efforts on assignments to this wire and
parts of design code that such assignments transitively depend
on (e.g., the conditional in line 39, Fig. 1(a)).

For every candidate repair produced, CirFix needs to also
answer: how good (i.e., fit) is the proposed repair at fixing
the defect? Unfortunately, evaluation approaches for candidate
repairs from software cannot be applied to HDL descriptions
that typically use testbenches (see Fig. 1(b)). We address this
using a novel fitness evaluation approach. Our instrumented
testbench records the values of output wires and registers at every
rising edge of the clock during an otherwise standard hardware
simulation. For developer-specified time intervals from the de-
sign simulation (a clock cycle by default), our fitness function
compares each output bit against the expected output: for every
bit match, we add to the fitness sum; for every bit mismatch,
we subtract from the sum. This fitness sum is then normalized.
For the 4-bit counter shown in Fig. 1, the testbench simulates
the design code for 26 clock cycles, out of which the first 20
produce an output of x (i.e., uninitialized) for overflow_out
on the original design. This causes an output mismatch for
overflow_out for 17 clock cycles, resulting in a fitness
score of 0.58 (see Section III-B for CirFix fitness calculations).
A repair managing overflow_out correctly would match
expected behavior, resulting in a fitness of 1.0.

This faulty circuit code was obtained by having a hardware
expert from industry adversarially transplant defects from their
experience into open circuit descriptions (see Section IV). We
use this example to motivate and demonstrate the basic design
ideas behind CirFix, an approach that scales well to larger circuit
designs, as we will demonstrate.

III. TECHNICAL APPROACH

In this section, we present CirFix, an automated repair algo-
rithm for defects in hardware design code. Our prototype imple-
mentation of CirFix operates on hardware descriptions written
in Verilog, and thus supports HDL programming constructs
such as sequential and parallel code, variable reassignment, and
synchronized code blocks. Our prototype would require modi-
fications to generalize to other hardware description languages
(e.g., adding support for AST parsing or different simulation
environments). The pseudocode is shown in Algorithm 1.

CirFix applies our two-pronged HDL-specific approach to
implicate faulty design code and assess the correctness of cir-
cuit descriptions to produce repairs that can then be shown to

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3739

Algorithm 1: The High-Level CirFix Pseudocode.
Input: Circuit design to be repaired, C.
Input: Instrumented testbench for circuit, TB.
Input: Expected output for circuit behavior, O.
Input: Fitness function, f .
Input: Parameters, popSize,maxGens, rtThreshold,
mutThreshold.

Output: Repaired circuit description.
1: pop← seed_pop(C, popSize)
2: repeat
3: childPop← ∅
4: while |childPop| ≤ popSize and ∀ candidate ∈

childPop. f(candidate, TB,O) < 1.0 do
5: parent← tournament_selection(pop, f)
6: fl_set← fault_loc(parent)
7: if probability() ≤ rtThreshold then
8: child← apply_fix_pattern(parent, fl_set)
9: childPop← childPop ∪ {child}

10: else �Repair operators
11: if probability() ≤ mutThreshold then
12: child← mutate(parent, fl_set)
13: childPop← childPop ∪ {child}
14: else
15: parent2 ← tournament_selection(pop, f)
16: {c1, c2} ← crossover(parent, parent2)
17: childPop← childPon ∪ {c1, c2}
18: until resources exhausted or

∃ candidate ∈ childPop. f(candidate, TB,O) = 1.0
19: return minimize(candidate, TB,O)

human developers for review. Our fault localization approach
simulates a faulty circuit and assigns blame to incorrect wire and
register outputs (line 6 in Algorithm 1; see Section III-A). Note
that while traditional software-based APR techniques typically
compute fault localization once at the start of the search for
repairs, we choose to repeatedly re-localize to support multiple
dependent edits made to the source code. Our fitness function,
tailored to the hardware domain, scores each candidate patch to
guide the search for repairs (lines 4 and 18 in Algorithm 1; see
Section III-B).

At a high level, CirFix uses genetic programming (GP) [31],
an iterative stochastic search technique, to synthesize candidate
repairs to faulty HDL programs. The framework takes as input
the source code implementing a faulty circuit design, an instru-
mented testbench used to simulate the circuit for testing and
verification purposes, the expected circuit behavior,2 and the
input parameters. The algorithm starts with the original source
code and maintains a population of program variants, each
stored as a repair patch [32] describing a sequence of abstract
syntax tree (AST) edits parameterized by unique node numbers.
Each program variant is obtained by applying a repair operator

2CirFix does not require perfect information for expected behavior for every
timestep: the developer can choose to only provide information at certain
intervals. See prior work RQ4 [23] for an evaluation of the trade-off between
the level of detail of expected output and repair success.

Algorithm 2: High-Level Algorithm for Fault Localization
for HDL Based on a Fixed Point Analysis of Assignments.

Input: Faulty circuit design code AST, ast.
Input: Simulation output,
S : T ime→ V ar → {0, 1, x, z}.

Input: Expected output, O : T ime→ V ar → {0, 1, x, z}.
Output: Fault localization set, FL.
1: FL,mismatch← ∅, ∅
2: mismatch′ ← get_output_mismatch(O,S)

�Section III-B
3: while mismatch �= mismatch′ do
4: mismatch← mismatch ∪mismatch′
5: for node in ast do
6: if implicated(node,mismatch) then
7: FL← FL ∪ {node.id}
8: for each child of node do
9: FL← FL ∪ {child.id}

10: if type(child) = Identifier and
child /∈ mismatch then

11: mismatch′ ← mismatch′ ∪ {child}
12: return FL

(lines 12 and 16 in Algorithm 1; see Section III-C) or a repair
template (line 8 in Algorithm 1; see Section III-C) to a parent
selected for reproduction. Candidate variants are selected for
reproduction based on their fitness scores assigned by the CirFix
fitness function (line 5 in Algorithm 1; see Section III-D). Our fix
localization identifies code to be inserted or replaced as part of
mutation operations (see Section III-E). The algorithm loops for
several generations, each maintaining a population of program
variants, until a plausible repair is found that produces output (as
observed by the instrumented testbench) matching the expected
circuit output, or allowed resources are exhausted (i.e., the algo-
rithm reaches a timeout or a certain number of generations). For
the final post processing step, CirFix minimizes [33] a candidate
repair to remove extraneous operations not needed to obtain
correct circuit output (line 19 in Algorithm 1; see Section III-F).
Candidate repairs are not deployed directly but are instead shown
to human developers (e.g., during the pair process between
an RTL design engineer and a verification engineer [34]) for
validation before the design is ultimately synthesized, reducing
maintenance costs [35], [36].

A. Fault Localization

Fault localization is critical to the success and efficiency
of APR [37]. Traditional APR for software often relies on
spectrum-based fault localization [38] to narrow down defects
to certain parts of a faulty program by sampling the program
counter. Such fault localization approaches do not extend natu-
rally to the parallel structure of hardware descriptions [19].

To overcome this challenge, we propose a novel dataflow-
based fault localization approach to implicate faulty code
in HDL descriptions. Previous work analyzing defects in

3740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

large hardware projects reports that most defects in Ver-
ilog descriptions correspond to assignment statements and if-
statements [39]. We present an algorithm that implements an
analysis of assignments made to wires and registers in a cir-
cuit’s design code to implicate faulty statements. Our proposed
algorithm transitively captures data and control dependencies
in a context-insensitive fixed point analysis. While traditional
spectrum-based fault localization approaches for software return
a ranked list of implicated statements [40], [41], [42], our
approach returns a uniformly-ranked set: due to the parallel
structure of HDL designs, a set of implicated assignments that
are equally likely to contribute to the design defect suffices.

Algorithm 2 outlines the high-level pseudocode for our fault
localization approach. The algorithm takes as input the AST of
the faulty circuit design, the output from design simulation, and
the expected circuit behavior (see Section III-B for the simulated
and expected outputs). It then compares the simulation output
against the expected behavior to produce a set of identifiers (i.e.,
variable names) for output wires and registers with mismatched
values. Using this mismatch set as a starting point, for every
node in the AST, the algorithm checks if the node is implicated
by output mismatch.3 Implication for a node in the AST occurs
when
� (Impl-Data): either the node corresponds to an assignment

statement and the left child of the node corresponds to
an identifier in the mismatch set (cf. data dependency
analysis),

� (Impl-Ctrl): or the node corresponds to a conditional state-
ment and an identifier in the conditional statement belongs
to the mismatch set (cf. control dependency analysis).

Any implicated node and all of the node’s children are added
to the fault localization set. Additionally, if any child of an impli-
cated node is itself an identifier not part of the mismatch set, the
name of the identifier is added to the mismatch set (Add-Child).
For example, for the 4-bit counter introduced in Section II, recall
that theoverflow_outwire had incorrect output from the cir-
cuit simulation. This causes the wire to be added to the mismatch
set. The CirFix fault localization implicates the only assignment
to overflow_out (line 40, Fig. 1(a)) by rule (Impl-Data) in
the first iteration of the algorithm. Indeed, the entire if-statement
wrapping this assignment (line 39, Fig. 1(a)) becomes implicated
by (Impl-Ctrl), bringing in the new identifier counter_out to
the mismatch set by (Add-Child). The process is repeated until
no new identifiers are added to the mismatch set.

This novel approach to fault localization for hardware is a
good fit for automatically repairing HDL designs: it returns a
precise set of implicated AST nodes in a faulty circuit design,
is context-insensitive and therefore inexpensive to compute,
and applies directly to node types associated with ASTs for
languages like Verilog. Note that while we demonstrate the
scalabaility of our approach on a variety of hardware designs
of different sizes (see Table II), our approach may require

3In a focused investigation of our our three largest benchmarks, both control
flow complexity and also the number of wires/registers were found to contribute
equally (40–50% each) to the final fault localization size, and thus the scalability
of our algorithm.

additional developer effort to generalize to very complex de-
signs (e.g., a microprocessor) with millions of wires, gates, and
registers. We discuss this limitation in Section VIII.

B. Fitness Evaluation

The fitness function evaluates the acceptability of a program
variant by assigning a value ranging continuously between 0 and
1 to the variant, with 1 indicating a plausible [43] (i.e., testbench-
adequate) repair ready to be shown to human developers. Fitness
provides a termination criterion for CirFix and guides the search
for a repair. As mentioned in Section I, traditional APR for
software uses test-case based evaluation strategies to assess can-
didate repairs. Hardware designs, by contrast, use testbenches
to verify functional correctness (see Section I for details on
the difference between hardware and software evaluations). We
present a novel fitness function tailored to hardware to guide the
search for repairs to HDL designs. Our fitness function uses two
key insights: visibility and comparison.

Many traditional hardware testbenches monitor the values of
output wires during simulation and assess correctness based on
the final output values. For instance, the testbench for the 4-bit
counter introduced earlier (Fig. 1(b)) may report that the final
value of the counter is 5 and the overflow bit is 1 when the
simulation terminates. Some off-the-shelf hardware testbenches,
especially those for large projects, may not even report the
exact incorrect value, reporting instead merely the presence
or absence of an error during simulation. We want our fitness
function to assess a candidate repair based on intermediary as
well as final output values, and assign fitness values to the repair
based on its overall closeness to the correct circuit design [44].
To do so, given a testbench for a faulty HDL description, we
instrument the testbench to record the values of output wires
and registers for specified time intervals. This instrumentation is
easily automatable: every hardware testbench must instantiate a
device-under-test (DUT) and connect wires to the module being
instantiated (cf. unit tests in software instantiating the object
being tested); each module in turn specifies input and output
wires, and a static analysis of the instantiation of the DUT
can provide the information needed to instrument a testbench
automatically.

Once the testbench is instrumented, we simulate the circuit
design and compare the results against the expected output
to assess functional correctness of the HDL description. We
desire a fitness function that assigns high values to candidate
repairs that display behavior similar to expected behavior. To
do so, we need to determine the relative contribution of each
bit to the fitness of a proposed repair. Given a set of time steps
T ime, a set of output wires and registers V ar, a simulation
result S : T ime→ V ar → {0, 1, x, z}, and expected output
O : T ime→ V ar → {0, 1, x, z}, where x or z correspond to
unknown logic value and high impedance respectively, for times-
tamp ci ∈ T ime, we sum over the n = |S(ci)| output bits of the
circuit. We compare the expected value for wire b from clock
cycle ci, Oci,b = O(ci(b)), against the actual value from the
simulation result, Sci,b = S(ci(b)). If the bits match, we add to
the fitness sum of the circuit; if the bits differ, we subtract from

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3741

TABLE I
REPAIR TEMPLATES IN CIRFIX

the fitness. An additional penalty weight ϕ is assigned to bits
with values of x (uninitialized) or z (high impedance).

The fitness sum, sum(S,O), and total possible fitness,
total(S,O), are defined as follows, where _ represents a bit
value of 0 or 1:

sum(S,O) =

k∑
ci=0

n∑
b=0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (Ocib, Scib) ∈ {(0, 0), (1, 1)}
ϕ (Ocib, Scib) ∈ {(x, x), (z, z)}
−1 (Ocib, Scib) ∈ {(1, 0), (0, 1)}
−ϕ(Ocib, Scib) ∈ {(_, x), (x, _),

(z, _), (_, z)}

total(S,O) =

k∑
ci=0

n∑
b=0

⎧⎪⎪⎨
⎪⎪⎩

1 (Ocib, Scib) ∈ {(0, 0), (1, 1),
(1, 0), (0, 1)}

ϕ(Ocib, Scib) ∈ {(_, x), (x, _), (x, x),
(z, _), (_, z), (z, z)}

.

The normalized fitness of the circuit is then defined as

fitness(S,O) =

{
0 sum(S,O) < 0
sum(S,O)
total(S,O) sum(S,O) ≥ 0

.

This novel approach to calculating normalized fitness is ef-
fective at capturing whether or not a candidate design is close
to the correct implementation of the circuit, and at guiding the
search for a repair.

C. Repair Templates & Repair Operators

A repair template for a defect in code is defined as a pre-
identified pattern that can be applied to some aspect of the
code to fix the defect. The idea of using templates for APR
is well-studied for software [45], [46], [47]. We apply repair
templates to aid CirFix in its search for repairs. We propose
nine repair templates corresponding to four defect categories for
HDL designs. Of the four defect categories we consider, three
are suggested in previous work by Sudakrishnan et al. [39] that
analyzes the bug fix history of four hardware projects written
in Verilog and presents several commonly-occurring fixes for
HDL descriptions; we propose the remaining defect category
based on our experience with defects in hardware designs. The
repair templates in CirFix are presented in Table I. Incorrect
conditionals, sensitivity lists, and assignments correspond to the
three most commonly occurring defects in the four hardware
projects analyzed in previous work [39, Tab. 2]. Note that our
repair templates focus on correct behavior from circuit designs
during simulation (cf. rules targeting synthesizability [48]). For

an incorrect conditional for a program branch (e.g., the condition
for a while-loop or an if-statement), our repair templates can
negate the conditional.

CirFix uses two standard repair operators from well-known
software repair approaches [22], [49], [50], mutation and
crossover, to search the nearby space of circuit designs to
produce a repair and to avoid local optima. The input param-
eter mutThreshold (line 11, Algorithm 1) tunes the relative
application of mutation and crossover.

As in common software APR approaches (e.g., [22, Sec. III-
F]), the mutation operator itself can be characterized into three
subtypes: replace, insert, and delete. The mutate function of
the CirFix framework generates a random probability value and
employs the user-provided replace, insert, and delete thresholds
to choose a mutation sub-type. The replace operator picks a ran-
dom node from the fault localization space and replaces the node
with another randomly chosen node from the corresponding fix
localization (see Section III-E) space. The insert operator picks
a random node from the fix localization space and inserts it after
another randomly picked node within a code block. The delete
operator picks a random node from the fault localization and
replaces it with an empty node — this operation is equivalent
to deleting certain statements from the program variant under
consideration.

CirFix uses the standard single-point crossover [51], which
picks a crossover point for each of the two parents. Edit opera-
tions to the right of that point are swapped between the two par-
ents. This results in two children program variants, each carrying
some information from both parents. The crossover operator
plays a key role in avoiding local optima when searching for
high-fitness patches.

D. Selection

Automated program repair techniques based on GP use se-
lection to choose parent variants from a population based on
fitness. Tournament selection [52], a selection approach that
selects a random pool of t program variants in a population
and selects the fittest member of this pool as the parent, has
been used widely for software-based APR [22], [49], [53], [54].
CirFix uses tournament selection to select a parent variant to
transfer genetic information to the next generation as a child
variant. The top e% fittest program variants from the previous
generation are automatically included in the next generation, a
process known as elitism [55], [56].

E. Fix Localization

Given that fault localization has identified faulty design code
to be changed, our fix localization provides some guidelines on
how to perform the changes. We use fix localization to restrict the
scope of the insert and replace operators to reduce the number
of syntactically-invalid mutants (cf. [57]).

For the insert operator, we propose to only use statements
types (e.g., conditional statements, assignments, etc. — see
Annex A.6.4 in the IEEE Standard for Verilog [58] for the full
BNF definition of statement types) as the sources for insertion
code. We further allow such statements to be inserted only into

3742 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

initial or always blocks, since such statements inserted
elsewhere violate the syntax of Verilog [58, Annex A.6.2]. For
the replace operator, we design CirFix such that an item in
a Verilog module [58, Annex A.1.4] can be replaced either
by another item of the same type, or by an item sharing the
same immediate parent type (as specified in the formal syntax
definition of Verilog [58, Annex A]). We return to this decision
in Section VII.

Our fix localization approach reduces the average number of
mutants producing compilation errors in our prototype from 35%
to 10%. This reduction is comparable to that of fix localization
techniques in software (e.g., [22]).

F. Repair Minimization

During the search for a repair, CirFix might produce edits
to the code that do not contribute to the repair (e.g., repeated
assignment statements within an always block). Such edits do
not increase the fitness of the candidate repair, but they could
introduce inefficiencies in the final circuit design or affect the
design’s readability [59].

CirFix removes such extraneous edits in a postprocessing
minimization step by finding a subset of the edits in a repair
patch from which no further elements can be dropped without
causing a reduction in the fitness of the patch. As in APR for
software (e.g., [22]), we use the delta debugging algorithm [33]
to efficiently (i.e., in polynomial time) compute this one-minimal
subset of the repair patch. The minimized set of repairs is
then converted back into HDL code implementing the hardware
design correctly.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup for our evalua-
tion of CirFix, including the construction of our new benchmark
suite, our choice of experimental parameters, and our human
study on evaluating the usability of CirFix’s novel fault local-
ization.

For our prototype implementation of CirFix, we use the
open-source PyVerilog toolkit [60] (version 1.2.1, modified
to support numbering for each node type) to parse a Verilog
description of a circuit and produce an AST representing the
circuit design code. We use Synopsys VCS [61], the primary
hardware verification tool used by a majority of the world’s
top-twenty semi-conductor companies [62], to simulate the code
using a manually instrumented testbench to assess functional
correctness of the circuit design. Our prototype for CirFix is
implemented using Python 3.6.8 and is made publicly available
on GitHub (https://github.com/hammad-a/verilog_repair).

A. Benchmark Suite for Hardware Defects

For our evaluation of CirFix, we desire a benchmark suite
consisting of faulty hardware designs that are indicative of
defects in industry, comprise a wide range in terms of project
size, and correspond to a variety of components found in real-
world designs. To the best of our knowledge, there are no
publicly available benchmarks that satisfy our requirements.

TABLE II
BENCHMARK HARDWARE PROJECTS IN OUR EXPERIMENTS. PROJECT AND

TESTBENCH SIZES ARE MEASURED BY SOURCE LINES OF CODE AS REPORTED

BY THE UNIX wc COMMAND

Additionally, there is limited open source community support
for industrial hardware designs, since such designs are often
considered Intellectual Property (IP) of the stakeholder compa-
nies. As such, we propose to adapt the defect-seeding approach
common in software [63], [64], [65] and present a benchmark
suite of defects scenarios [22], [37] — each consisting of a circuit
design, an instrumented testbench for the design, information for
correct circuit behavior, and an expert-transplanted defect from
real-life experience — to be used for the evaluation of automated
repair techniques for hardware.

1) Selecting Hardware Projects: Every defect scenario in-
cludes a base circuit design and a testbench, as introduced in
Section II (Fig. 1). We required circuit designs with an available
testbench and that admit simulation using the Synopsys VCS
tool without any changes to the design code. This is a common
requirement comparable to the benchmarks suites for APR in
software [22, Sec. IV-A] [66, Sec. 3.1]. The hardware projects
for our benchmark suite are presented in Table II. For each
hardware project, we need an instrumented testbench to record
output values for our fitness function. While the instrumenta-
tion process is automatable (see Section III-B), we manually
instrument the testbenches for our prototype. Each testbench
instrumentation required under 10 lines of Verilog code, took
at most 5 minutes of developer time, and did not require any
circuit-specific knowledge beyond that available in the testbench
(i.e., identifier names of output wires and registers, and the clock
cycle duration).

We choose six projects from undergraduate VLSI courses to
be indicative of repairing a small component in hardware design.
We augment this by choosing the remaining five projects from
OpenCores (a popular website for open-source HDL designs)
and GitHub collectively to be indicative of repairing the entirety
of a large circuit design. Unlike some previous works that
only use toy benchmarks for evaluation (e.g., [8], [67]), our
benchmarks include a range of project sizes (in terms of source
lines of code), and all projects — including those from courses
taught at the undergraduate level — correspond to components
found in real-world hardware designs. To satisfy our variety
requirement, we include a project from each of the key cores

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3743

listed on the OpenCores website for certified projects (i.e., arith-
metic, communication, crypto, error correction, and memory).

2) Obtaining Information for Correct Circuit Behavior: Cir-
Fix requires information about expected behavior for a circuit
design to assign fitness values to candidate repairs. In APR for
software, guidelines for correct behavior often take the form of
passing and failing test cases [13]. More generally, however,
such information can be induced from a previous version of
the design known to be functional [68], [69], [70], [71], [72],
[73] or a combination of data mining and static analyses of the
design [74], [75], [76], [77], or manually provided by the human
developer [78], [79], [80], [81].

This so-called “oracle problem” [82] remains a challenging
issue in general for hardware testing and automated repair: im-
plicit, high-level test oracles (e.g., “the program does not divide
by zero”) used by APR tools for software do not typically carry
over to hardware. Given that circuit designs exhibit parallelism
and require synchronization against a clock signal [83], how a
circuit design reaches a certain output is often equally important
as the actual final output produced. As such, any hardware test
oracles need detailed information about the intermediate values
from design simulation, and it does not suffice to only use the
output values from the simulation as correctness information for
an approach like CirFix.

For our benchmark suite, we follow an established approach
in APR for software [11], [84] and employ a previously-
functioning version of the circuit design to record the expected
behavior information for circuits in our benchmark suite. We
acknowledge that such a previously-functioning version might
not always be available, or the circuit specification may have
changed. In that case, a developer can use a partially correct
or most up-to-date version of the circuit as a starting point,
and manually annotate the missing or incorrect bits based on
knowledge of the circuit design. This process is analogous to test
suite evolution in software [85]. Ultimately, however, if manual
developer effort and previous designs are both unavailable,
CirFix cannot be applied to repair defects in a circuit.

While we recognize that the process of manually annotating
the correctness information may take longer than manually fix-
ing a single defect, this information is a one-time cost as long as
the high-level circuit specification (i.e., I/O wires and registers,
expected behavior) does not change. Given the number of bugs
that may arise during the development and maintenance of a
circuit design, we believe that it would still be more cost effective
to invest developer effort in the correctness information, which
can then be used by CirFix during inexpensive machine idle time
(see discussion in Section V-A).

3) Transplanting Hardware Defects: Since actual industrial
defects are not made publicly available, we propose an approach
based on defect transplantation by experts. Previous works
have used either randomly-seeded or self-seeded defects for
evaluation, potentially admitting bias (e.g., [9]). To combat this,
we recruited three hardware experts — two of whom work in
industry and one who works in academia, with 19 years of
experience with hardware design collectively — to transplant
(proprietary or non-public) defects from their real-world experi-
ence into otherwise-correct open source implementations of the

TABLE III
REPAIR RESULTS FOR CIRFIX. “CAT” INDICATES THE CATEGORY FOR THE

DEFECT, “REPAIR TIME” SHOWS THE TIME FOR REPAIR (IN SECONDS), AND A

MISSING TIME FOR REPAIR INDICATES NO REPAIR WAS FOUND IN 5
INDEPENDENT TRIALS. CIRFIX PRODUCED PLAUSIBLE REPAIRS TO 21 OF THE

32 DEFECT SCENARIOS IN OUR BENCHMARK SUITE, OF WHICH 16 WERE

CORRECT UPON MANUAL INSPECTION BY THE AUTHORS (DENOTED WITH A

�) AND 14 WERE DEEMED CORRECT ALONG A DIFFERENT CRITERIA BY AN

INDEPENDENT EXPERT TEAM (DENOTED WITH A †)

hardware projects in our benchmark suite. We desire defects in
our benchmark suite corresponding to a variety of complexities,
both in terms of finding and fixing the defect. As such, we define
two defect categories for this process:
� Category 1: A Category 1 (i.e., “easy”) defect denotes mis-

takes pertaining to simpler, higher-level aspects of circuit
design.

� Category 2: A Category 2 (i.e., “hard”) defect denotes more
intricate errors that usually require more effort to diagnose,
understand, and/or fix.

To get the benefits of real-world defects in our benchmark
suite, we instructed our recruited experts to transplant and
categorize real defects they have previously encountered to
the open-source circuits in our benchmark. We also asked our
experts for “... variety in how the defects appear and would be
fixed, as long as that variety aligns with how often [they] observe
these bugs or mistakes in real life”. We further required that any
transplanted defects should compile successfully and change
the externally-visible behavior of the circuit with respect to the
instrumented testbench, and correspond to approximately the
same level of complexity as that of real-world defects.

Table III lists the transplanted defects from our experts that
met these criteria. In total, our experimental setup includes 32
different defect scenarios spanning across 11 hardware projects,
with 19 Category 1 (i.e., “easy”) and 13 Category 2 (i.e., “hard”)

3744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

defects. This benchmark suite is 1.5–10× as large as benchmark
suites used in the hardware diagnosis literature [6], [7], [8], [9],
[39], [67].

B. Algorithm Parameters

We refer to each execution of CirFix as a trial. Each trial is
initialized with a distinct random seed for reproducibility of our
results, and conducted on a quad-core 3.4 GHz machine with
hyperthreading and 16 GB of memory. We ran 5 independent
CirFix trials for each defect scenario, stopping when an ac-
ceptable repair was found. Each individual trial was terminated
after 8 generations of evolution or 12 hours of wall-clock time
(whichever came first).

For the GP parameters, we use population size popSize =
5000, repair template threshold rtThreshold = 0.2,
mutThreshold = 0.7. In line with established practices from
APR for software [22], [49], [53], we use deletion, insertion,
and replacement thresholds of 0.3, 0.3 and 0.4 respectively. For
parent selection, we use a tournament size t = 5 to increase
the selection pressure on candidate variants [86]. For elitism,
we propagate the top e = 5% of each generation to the next
without any modifications.

For fitness evaluations, we use ϕ = 2 as additional weight
assigned to bits with values of x or z. This makes incorrect
comparisons between ill-defined wires twice as detrimental to
the fitness score of a candidate repair as binary bit mismatches.
We found that a weight ϕ = 1 did not penalize such incorrect
comparisons enough (resulting in longer times to find a repair),
whileϕ = 3 caused too significant a drop in fitness for candidate
variants (negatively impacting the exploration of the search
space for a repair).

We evaluated other values suggested by literature (e.g.,
smaller population sizes [84], [87]), and found no significant
differences in CirFix’s performance.

C. Human Study Protocol

We also investigate the usability of our novel fault localization
algorithm (see Section III-A), independent of the automated
repair context. We asked humans (i.e., hardware engineers),
rather than CirFix, to assess the quality and usefulness of the fault
localization algorithm. To investigate the incremental benefit of
our fault localization, we consider three scenarios: the full output
of the algorithm (see Section III-A), only initially implicated
statements of the algorithm (no transitive information, only line
1 of Algorithm 2), and no fault localization annotations.

Participant Recruitment: Under UM IRB-HUM00199335,
we recruited a combination of undergraduate and graduate com-
puter science students (n = 41). One student reported having
less than a month of experience, ten students reported having
1 to 4 months experience, seven students reported having 4
months to 1 a of experience, nine reported having 1 to 2 years
of experience, and the remaining six reported having 2 or more
years of experience. We drew students from five undergraduate
courses, a graduate course, and a computer engineering lab
mailing list at the University of Michigan. At the beginning of the
survey, participants’ background in Verilog was collected (e.g.,

Fig. 2. Example of defect scenario presented to participants.

any courses they have taken). Participant data was anonymized,
but they could optionally request a $25 USD gift card as com-
pensation. We collected 30

Debugging Scenarios: We sampled (uniformly at random)
10 defect scenarios each from student and OpenCores projects,
with roughly equal numbers of Category 1 and 2 defects. To favor
readability and comprehension within a time-constrained human
study (e.g., [88], [89]), we filtered out defects that resulted in
more than 100 lines of code implicated by fault localization.
This resulted in 12 snippets from the programs in Table II: eight
from student projects and four from OpenCore projects. Each
debugging scenario included information on the parent hardware
design and documentation on the desired properties and output.

Debugging Task: Each participant was sequentially presented
with 6 distinct randomly-chosen debugging scenarios. Each
scenario was paired with a debugging hint: textual highlighting
of implicated code, as shown in Fig. 2.

Participants were asked to: (1) identify faulty lines in the
snippet, (2) indicate which lines they would alter to fix the defect,
(3) propose how they would alter the lines to fix the defect if they
could patch it. If the snippet version presented to the participant
contained fault localization hints, the participant also rated the
usefulness and accuracy of those hints on a 1–5 scale.

V. CIRFIX REPAIR EVALUATION

In this section, we present an empirical evaluation on our
benchmark suite of hardware defect scenarios. We analyzed the
following research questions:

RQ1: What fraction of defect scenarios can CirFix repair, and
how sensitive is our fault localization approach?

RQ2: How effective is the CirFix fitness function at guiding
the search for a repair to a circuit description?

In prior work [23], we addressed two additional research
questions: (1) what is the performance of CirFix on repairing
two different types of defects varying in difficulty and (2) how
sensitive is CirFix to the quality of the information for expected
behavior. We found CirFix to repair both Category 1 and 2
defects with comparably high success rates, and found CirFix
to not be overly sensitive to the quality of the expected circuit
behavior information, yielding high repair rates and quality even
under settings when low quality correctness information is used
as input to the algorithm.

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3745

A. RQ1. Repair Rate, Quality, and Sensitivity for CirFix

Repair Rate: Table III presents the repair results for each
defect scenario. CirFix produced plausible (i.e., testbench-
adequate) repairs for 21 of the 32 (65.6%) defects. Of the 11
defects that were not repaired, 4 exhausted resource limits while
7 required edits not supported by CirFix operators and repair
templates. While a direct comparison between CirFix and APR
for software is not possible, we observe that the repair rate of
CirFix comparable to the reported repair rates of well-known
software repair approaches, e.g., GenProg (52.4%) [22], Angelix
(34.1%) [90], and TBar (53.1%) [46]. When comparing CirFix
to a more straightforward search algorithm applying edits at uni-
form to a circuit design, we found that the brute force algorithm
did not scale to the complexity of defects in our benchmark suite
and reported no repairs within the 12 h resource bounds. Though
not part of a comprehensive scientific evaluation, when tested
on simple single-edit defects (not part of our benchmark suite)
in smaller projects from undergraduate courses, the brute-force
algorithm still took hours to find repairs that CirFix found in
seconds to minutes, highlighting CirFix’s efficient pruning of
the search space. We leave a full investigation of CirFix against
more straightforward search as future work. Note that we can not
compare CirFix to other baselines for hardware repair, since at
the time of writing, there are no baselines that operate on source
code level Verilog descriptions to automatically repair defects;
indeed, that is precisely the improvement CirFix brings over the
state-of-the-art.

The average wall-clock time for a trial to find a repair was 2.03
hours, of which an average of over 90% was spent on fitness
evaluations (i.e., design simulations). Most non-repairs timed
out after 12 hours, though defects for some projects with smaller
search spaces hit the 8 generation maximum first. These results
are in line with previously-reported patterns of behavior for APR
for software, supporting our hypothesis that the CirFix algorithm
is capable of performing as well on hardware design defects as
established APR approaches do on software.

We acknowledge that wall-clock runtime for CirFix on a given
defect can be longer than that of an expert human manually fixing
the defect. However, CirFix was designed to favor situations
in which developer time is significantly more expensive than
machine time: it is often more cost-effective to run tools like
CirFix using inexpensive machine idle time and then to employ
expensive developer time to ensure the repairs are correct before
being synthesized [35]. As such, we see CirFix as being cost-
effective in terms of reducing the burden on designers.

Repair Quality: We follow the approach taken by Long and
Rinard [50] for patch assessment since it follows best practices
in the APR literature [43], [91]. We manually analyze the 21
repairs produced by CirFix. We found 16 of the generated
repairs to exhibit correct behavior, with the final 5 to be correct
only with respect to the testbench (i.e., overfitting).4 While

4We focus on correctness of a patch against the specification of the circuit
(e.g., ensuring the absence of clock- or reset-domain issues) during our manual
inspections. The synthesizability of the design is left to be evaluated by the
developer during the validation phase of the hardware design process [92], but
we discuss the synthesizability of CirFix in practice in Section VII.

Fig. 3. A representative multi-edit repair by CirFix for a defect in the
sdram_controller benchmark. The original defect, with a missing and
an incorrect assignment, is shown in red; the repaired code is shown in green.
Edits on lines 8 and 9 correspond to insert and replace operations respectively.

room for improvement remains, software industrial deployments
with similar rates have proved useful: for example, Bloomberg
reported that a 48% correct patch rate was associated with “very
positive” feedback and a general “helpful” opinion [93, p. 5].

We augment this analysis with an independent assessment
from Yang et al. an established expert team in APR [24], [25],
[26], [27], [28], who analyzed the semantics of the produced
repairs against the human-written patches and found 14 of the
produced repairs to be semantically identical to the human
patches (see Table III). While APR expertise is not equivalent
to domain expertise, APR experts tend to be more suited to
assessing the patches produced by these methods due to “cre-
ative” (or adversarial or potentially-overfitting) nature of such
patches [94], [95], [96], and evidence suggests that domain-
experts may not be a strong gold standard [97]. We acknowledge
that this assessment is not a substitute for a full human study
on patch correctness; however, having two independent teams
find converging results adds confidence that a majority of the
plausible repairs do not overfit to the testbench (a common
problem in APR for software [50], [98], [99]), since we inspect
intermediate wire values when assigning fitness scores. We do
note that correctness is critical in hardware designs (e.g., since
manufactured chips cannot be easily updated once deployed),
and our use case does not involve deploying patches directly
but instead showing plausible patches to developers to reduce
maintenance costs [35], [36].

We observed that 7 out of the 21 minimized repairs were
multi-edit repairs, highlighting CirFix’s ability to produce re-
pairs to defects that require more than one change to the circuit
design. By comparison, common APR approaches for soft-
ware usually only produce single-edit repairs [11], and only
recently have there been works investigating multi-edit repairs
[90], [100].

For instance, in a faulty version of thesdram_controller
benchmark, one of our experts changed assignments to two wires
to transplant a Category 2 defect, causing incorrect functionality
in the host interface. CirFix assigned this faulty design code a
fitness value of 0.818 based on output mismatch. CirFix repaired
this defect scenario in 4.6 hours by inserting a new assignment
and modifying an existing assignment. The original defect and
the repaired code are shown in Fig. 3. This is an indicative
instance of CirFix repairing Category 2 (i.e., “hard”) defects

3746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

TABLE IV
REPAIR RESULTS FOR CIRFIX WITH ADDED NOISE TO INITIAL MISMATCH SET

FOR OUR FAULT LOCALIZATION ALGORITHM. “DEFECT CAT.” INDICATES THE

CATEGORY FOR THE DEFECT, “NORMALIZED REPAIR TIME” SHOWS THE

NORMALIZED TIME FOR REPAIR (IN SECONDS) WHEN COMPARED TO THE

ORIGINAL REPAIR, AND A ’—’ INDICATES NO REPAIR WAS FOUND IN 5
INDEPENDENT TRIALS. “NOISE” INDICATES THE PERCENT OF DISTURBANCE

PLACED ON THE FAULT LOCALIZATION. THE ORDERING OF THE BENCHMARKS

FOLLOWS TABLE III

with multiple edits to the faulty circuit design. We return to
multi-edit repairs in the human study (Section VI).

Fault Localization Sensitivity: To assess repair performance
as fault localization quality decreases, we conducted a targeted
experiment reducing the quality of the initial fault location avail-
able to CirFix in a controlled manner. This sort of investigation,
in which the sensitivity of the algorithm with respect to fault
localization is assessed, is important is software APR [101],
[102], [103], [104].

When simulation outputs are compared against expected be-
havior to produce the initial set of wires and registers with mis-
matched values (see Section III-A), we also randomly include
some correct wires and registers (with probability 25%, 50%,
or 75%) as “noise”. Because our fault localization is a transitive
fixed point calculation, additional initial elements may result in
larger fault localization sets (e.g., informally, the traditional scal-
ability problem with fault localization is that almost everything
may end up implicated).

We focus on defect scenarios CirFix successfully repaired.
Table IV presents normalized results of five trials at each noise
level. Of the 21 defect scenarios CirFix originally plausibly
repaired, CirFix also found plausible repairs for all 21 when
subjected to 25% noise, 19 at 50% noise, and 20 at 75% noise.
Execution times with lower-quality fault localization are not sta-
tistically different to those found without fault localization noise
(p = 0.7, p = 0.6, p = 0.9, unpaired Student t-test), suggesting
that CirFix performs similarly even if the design or testbench
does not admit precise fault localization. Any difference in
execution times can be attributed to the randomness of the

search for repairs (a larger fault localization set may result in
new candidate repairs or repairs being considered in a different
order). An investigation of this outcome reveals that many of
the same registers and wires were transitively implicated in both
cases (i.e., with and without noise). For example, in the largest
benchmark (reed_solomon_decoder), there are 10 (out of 11
maximum) elements in the initial mismatch set and 114 in the
final fault localization set. With 75% noise, there are 11 elements
in the initial set but 124 in the final fault localization set. This
small increase suggests that many of the potential wires and
registers were already transitively implicated without the added
noise. Our targeted experiment furthers confidence that CirFix’s
novel fault localization approach scales to larger designs or those
with more complicated or less precise testbenches that do not
admit accurate initial fault localization.

CirFix produced plausible repairs to 21 out of 32 (65.6%)
defect scenarios in our benchmark suite, of which 16 repairs
were fully correct and 5 were correct only with respect to
the testbench. The CirFix repair rate is comparable to strong
results from APR for software, suggesting that our approach
brings the benefits of APR to hardware designs. Lastly, our
sensitivity investigation gives confidence that CirFix’s fault
localization approach scales to larger designs.

B. RQ2. Quality of Fitness Function

CirFix’s high repair rate suggests that our fitness function,
coupled with our testbench instrumentation approach, is highly
effective at guiding the search for repairs to faulty circuit designs.
We observe that for each change to design code that brings a
candidate repair closer to a correct repair, our fitness function
shows a corresponding increase in the candidate repair’s fitness
(i.e., our fitness function has a strong fitness distance correlation,
a trait that makes genetic algorithms thrive [44]). This is best
observed in transplanted defects that require multiple edits to
the design code to be corrected. For instance, one of our experts
transplanted a defect in thecounter project that required three
edits to the design be repaired. The triple-edit repair produced
by CirFix for this defect scenario incrementally raised the fitness
of the best candidate patch first from 0 to 0.58, then to 0.77, and
finally to 1.0 to produce a correct repair. Similar behavior is seen
for every other multi-edit repair produced by CirFix, indicating
that our fitness function is effective at capturing incremental
changes to a circuit design during the search for a repair.

We also observe instances where CirFix produces a re-
pair deemed unfit by our fitness function and instrumented
testbench but considered correct by the original, unanno-
tated testbench. We examine one such case in detail, re-
lated to the out_stage module in the error correction core
reed_solomon_decoder. This module is responsible for
generating output bytes from pipelining input memories. A
faulty version of this circuit obtained from one of our experts
removed the resetwire from the sensitivity list of an always
block. This caused incorrect resetting of output wires by the
circuit. Our fitness function assigns the incorrect design code

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3747

a non-perfect fitness value of 0.999. The original testbench,
however, reports no errors in the incorrect code. The final repair
produced by CirFix fixes this defect and passes all checks by the
original testbench and our instrumented testbench. This suggests
that our fitness function and testbench instrumentation can catch
errors beyond the capabilities of the original testbench without
adding any additional testing logic.

The CirFix fitness function is highly effective at capturing
incremental changes to a circuit’s design code to guide the
search for a repair, and has the potential to increase testing
prowess without any added testing logic to a bench.

VI. EVALUATION OF HUMAN STUDY

Next, we present statistical analyses of the responses to our
human study. In total, 41 users participated in our survey and
each completed 6 debugging tasks. We consider the following
additional research questions:

RQ3: Does CirFix’s fault localization algorithm improve de-
signers’ objective performances?

RQ4: In what contexts do designers find CirFix’s fault local-
ization algorithm helpful?

A. RQ3. Fault Localization and Human Performance

We assessed programmer performance by evaluating (1) F-
scores (F1) of correctly-identified faults for each debugging
task by each participant and (2) total time taken to complete a
debugging task within no specific time limit (see Section IV-C).
A participant is said to correctly identify faults for a given defect
scenario if they identified program line(s) that contain a bug
or missing line(s). F-scores were evaluated by calculating the
harmonic mean of recall and precision.

To evaluate the statistical significance of participants utilizing
the fault localization as a debugging aid as opposed to none,
we used the unpaired Student t-test. We did not observe a
statistically-significant difference in time taken to localize faults
with full or no annotations from our fault localization (p =
0.41). On average, participants spent 299.6 seconds with full
annotations as opposed to 239.0 seconds with no annotations.
A participant with an F-score of 1 correctly identified faulty
program line(s) or missing line(s) in the defect scenario, while a
F-score of 0 meant no faulty program line(s) or missing line(s)
were correctly identified. We did find that the objective F-score
for participants given full localization was higher (F1 = 0.67)
than the objective F-score for participants who had half fault
localization (F1 = 0.33), which in turn was higher than those
without fault localization (F1 = 0.29). However, this trend did
not rise to the level of statistical significance (p = 0.12). We
predict that the results indicate CirFix data-flow based notion of
fault localization can be a useful tool for manual debugging.

In addition, we found statistically-significant differences in
the F-scores between experts (F1 = 0.37) and novices (F1 =
0.17) when they had CirFix’s fault localization with a large
effect size (p = 0.04, d = 0.54). This statistic did not survive

Fig. 4. A visual representation of the distribution of ratings subjects gave to
CirFix’s fault localization when viewed as a debugging aid. Subjects rated the
tool as a debugging aid based on accuracy and usefulness on a scale of 1–5, where
1 represents not at all accurate or useful and 5 represents extremely accurate or
useful.

correcting for multiple comparisons. However, all other signifi-
cant values reported survive correcting for multiple comparisons
(q = 0.05) to avoid false discovery. We used Cohen’s d due to
similarities in standard deviations in the groups.

CirFix fault localization produced no significant improve-
ment in designer’s objective performance.

B. RQ4. Subjective Judgment of Fault Localization

We assessed participant subjective judgements of CirFix’s
fault localization support in various contexts, including de-
bugging multi-line defects and different circuit designs (see
Section IV-A).

For each presented stimulus with a debugging aid, participants
were asked to rate, on a Likert scale, the usefulness and accuracy
of the tool in helping them localize the circuit defects as seen on
Fig. 4. Differences in the number of responses per rating arise
because not all participants answered all questions.

Participants rated full fault localization support on student-
developed designs to be significantly more useful and accurate
than full support for open source projects (p = 0.01, d = 0.7;
p = 0.002, d = 1.05, a large effect size). These results suggest
our algorithm would be more beneficial for debugging in peda-
gogical environments.

Most interestingly, we find that participants rated CirFix’s
fault localization support to be significantly more useful and
accurate for debugging multi-line defects than single-line de-
fects with a large effect size (p = 0.002, d = 1.04; p = 0.003,
d = 0.86). Given that support for multi-line software repairs is
limited [105], [106], with most tools only supporting single-line
repairs, our results, by contrast, are promising for reducing
maintenance costs associated with more complex defects in the
hardware domain.

CirFix fault localization is may be significantly helpful for
multi-line defects (p = 0.002) in pedagogical contexts.

3748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

C. Human Study Discussion

CirFix includes two novel approaches that we hypothesize
contribute to its success in repairing hardware defects: the fault
localization algorithm and the fitness function. When coupled
with prior direct study of this fitness function [23, Sec. 5.3] that
found the function to be highly effective at guiding the search for
repairs, our human study helps tease apart the two components.
In particular, we conclude that the fitness function is critical to
CirFix’s overall success (e.g., its high fitness distance correlation
was shown in Section V-B). By contrast, the fault localization
algorithm is more useful for humans in particular contexts, such
as multi-line defects.

There have been previous concerns about ranked list fault
localization [107], [108] and the degree to which humans make
effective use of multiple implicated lines. Although not directly
comparable, our fault localization both does not utilize ranked
lists and also does well in multi-line contexts. We believe our
success suggests promising future directions.

Furthermore, the statistically significant results on the subjec-
tive judgment of CirFix’s fault localization may prove to be more
beneficial for pedagogy. In our qualitative analysis of optional
questions given to participants at the end of the study, we found
that participants, particularly novices, who self-reported to be
less effective at tasks related to debugging hardware designs,
rated the debugging features (e.g., highlighting of implicated
statements and naming of implicated wires or registers) to be
significantly useful (p = 0.02, d = 0.97; p = 0.001, d = 1.35).
This indicates that debugging aids with supplemental supportive
features, such as our fault localization algorithm, could help
novices navigate these tasks. Despite advances in hardware
development platforms, novices still report intimidation by cir-
cuitry [109]. The self-efficacy of students can be improved by
providing them with support they find useful, such as our fault
localization algorithm.

VII. DISCUSSION OF SYNTHESIZABILITY AND TIMING

Professional hardware designers often aim to construct a
physical system that passes all tests in the real world. We
consider two ways a design may fail to complete that end-to-end
process: synthesizability and timing constraints.

Synthesizable designs are defined as descriptions that can
generate a physical system (e.g., ASIC) using a pre-defined set of
basic building blocks (see IEEE 1364.1 [58]). Synthesizability
centers on avoiding certain language constructs (e.g., force and
release, or fork and join, which are mainly used for simulation
purposes) that cannot translate into physical circuits and may
also depend on the electronic design automation tools used.
Because the line between synthesizable and non-synthesizable
designs is nuanced [110], [111], designers may be instructed to
follow established guidelines [58], [112]. For example, it can be
difficult to synthesize module instances that initiate a delay on
built-in gates [113].

Timing constraints center on whether or not the circuit con-
verges to produce the correct answer in time. Informally, signals
must propagate and converge along the “critical path” to an
output within a given budget or frequency [114]. For example,

a circuit design that is synthesized with a 10 nm process and
meets all timing constraints may not behave correctly if it is
instead fabricated with a larger, slower 45 nm process. Similarly,
a design that meets timing constraints when first fabricated but
is then changed by inserting additional delays on its critical path
may then fail to meet those previous constraints, e.g., FPGA
timing errors that may arise during the “place and route” step
after synthesis [115].

Since CirFix produces fixes to faulty hardware designs ignor-
ing plausible synthesizability or timing constraint changes, we
consider all 21 patches from Table III and manually examined
18 to assess changes in the design that may negatively impact
the end-to-end process. We exclude 3 patches that repaired non-
synthesizable designs not appropriate for timing constraints. We
found that no patches introduced specific constructs that are
characterized to lead to non-synthesizability. In addition, we
found 9/18 of the patches to contain changes (such as adding
delays along a critical path) that we infer may impact the
predefined timing budgets in the design.

Because our notion of synthesizability is based solely on
structural elements of the Verilog design that can be detected
statically, a modified version of CirFix that avoids introducing
those elements would increase confidence that if a design was
synthesizable before CirFix, then it would remain synthesizable
after being patched by CirFix. Similarly, CirFix might make
use of static timing analysis (STA) or worst case execution time
(WCET) calculations and reject edits that may slow the design.
Unfortunately, however, such static analyses of circuit designs
are often inaccurate or conservative (e.g., [116]). As a result,
we expect that practitioners would still carry out simulations,
waveform analyses, and post-fabrication testing to authenticate
the viability of a CirFix-patched system.

VIII. LIMITATIONS AND THREATS TO VALIDITY

Our results suggest that CirFix is highly effective at automati-
cally repairing defects in HDL descriptions. That said, there are
several limitations to our approach and threats to the validity of
our results that we describe in this section.

Timing Bugs: Faults in HDL descriptions stemming from
timing flow issues and incorrect circuit behavior with respect to
the clock signal often go undetected by a traditional testbench,
requiring instead complicated analyses of waveforms from the
simulation. Such timing bugs are therefore not in scope of our
approach that heavily relies on testbenches to assess functional
correctness of designs. We note that while such bugs are complex
to debug, they represent only a subset of hardware defects
in industry, and a non-trivial amount of defects in hardware
correspond to functional correctness [117].

Threats to Validity: The parameters for the prototype imple-
mentation of CirFix are chosen based on empirical performance
and may not be optimal. We do note, however, that the repair
operators, fault and fix localization approaches, and representa-
tion choice for repairs matter more than the actual values of the
GP parameters for APR [118].

Our benchmark defects may not be indicative of defects
in real-world hardware projects, posing a potential threat to

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3749

external validity. To mitigate this threat, we evaluated CirFix
on a variety of hardware projects taken from different sources,
and had expert hardware designers transplant defects from their
real-life experience with HDL designs covering a variety of
defect types (see Section IV-A3).

While our results on the scalability of CirFix’s repairs gives us
confidence that our implementation scales to larger benchmarks
than those we tested, additional developer effort may be needed
to apply CirFix to very large designs, such as modularizing the
design and testbench (cf. functions and unit tests in software).
We leave further optimizations to the CirFix fault localization
(e.g., more efficient pruning of the search space) as future work.

Finally, our human study participants are students. While they
may represent new hires joining the workforce, they are not
indicative of experienced hardware designers.

IX. RELATED WORK

Automatic Error Diagnosis and Correction in Hardware De-
signs: While a significant amount of work has been done in
automatic error diagnosis of hardware designs, the correction of
such errors automatically has not been well-explored to the best
of our knowledge. Techniques in the works of Jiang et al. [6] and
Ran et al. [7] employ software analysis approaches to identify
statements in design code responsible for defects, but suffer from
high false positive rates.

Bloem and Wotawa [8] use formal analysis of circuit de-
scriptions to identify defects, and Peischl and Wotawa [14] use
a model-based diagnosis paradigm that supports source-level
debugging of large VHDL designs at the statement and expres-
sion level. This use of formal methods for error diagnoses is
orthogonal to our work, but could be applied to reduce the search
space for approaches like CirFix.

Staber et al. [67] use state-transition analysis to diagnose and
correct hardware designs automatically, but their techniques
similarly do not scale to real-world circuits with large state
spaces. Our approach, by contrast, is more scalable to larger,
real-world hardware descriptions. Chang et al. [9] explicitly
insert multiplexers to automatically diagnose faults in hardware
designs and suggest repairs; Madre et al. [10] use Boolean
equation solving to diagnose and rectify gate-level design errors.
By contrast, our technique applies to both behavioral (higher
level) and RTL aspects of a circuit design.

Automated Program Repair for Software: In the realm of
software, significant research effort has been devoted to repair-
ing bugs automatically over the last decade [11], [12], [13].
Automated program repair usually takes as input source code
with a deterministic bug and a test suite with at least one failing
test that reveals the bug, and aims to automatically generate
fixes to the buggy code. Test suite based repair, where test cases
are used to guide the search for a patch, can be further divided
into generate-and-validate and semantics-driven approaches.
Generate-and-validate techniques produce candidate patches for
the buggy code and evaluate them against the test suite to
check if all tests pass [22], [32], [43], [49]. Semantics-driven
approaches first extract constraints on a program based on test

suite execution and then use these constraints to synthesize a
patch [63], [90], [119], [120]. While software approaches to APR
make use of test suites to evaluate candidate repairs, CirFix uses
instrumented hardware testbenches to make visible the internal
and external behavior of a simulated circuit for fitness evaluation.
Additionally, APR for software usually uses spectrum-based
fault localization to implicate faulty code, whereas CirFix uses
our novel fault localization approach supporting parallel hard-
ware descriptions.

X. CONCLUSION

This paper presents CirFix, a framework for automatically
repairing defects in hardware designs implemented in languages
like Verilog. CirFix makes use of readily-available artifacts
included in the hardware design process (e.g., testbenches) to
diagnose and repair defects in both behavioral and RTL designs
in the circuit description. These repairs can then be shown to
developers for validation before the synthesis phase, reducing
maintenance costs. The testbench-based evaluation and the par-
allel structure of hardware designs pose challenges that render
traditional APR approaches from software inapplicable to the
hardware domain. We present two key insights to bridge this gap.
First, we propose a method to instrument hardware testbenches
to admit a circuit’s behavior to guide the search for repairs.
We present a novel fitness function tailored that performs a
bit-level comparison of the made-visible output wire values
against expected behavior to assess functional correctness of
candidate repairs. Second, we present a novel fault localization
approach based on a fixed point analysis of assignments made
to registers and output wires to implicate statements for defects,
since spectrum-based approaches commonly used in APR do not
apply to hardware designs. Our systematic evaluation of CirFix
presents a new benchmark suite of 32 defect scenarios trans-
planted by three hardware experts across 11 different Verilog
projects. CirFix produces plausible repairs for 21 out of 32 and
fully correct repairs for 16 out of 32 of the Verilog defects within
reasonable resource bounds. Lastly, we evaluated the relative
utility of our novel fault localization algorithm independent of
our automated repair context via a human study. We found a
statistically significant preference (p = 0.003) for CirFix fault
localization as a debugging aid in fixing multi-line defects,
primarily in student applications (p = 0.01).

ACKNOWLEDGMENTS

Any opinions, findings, or recommendations expressed are
those of the authors and do not necessarily reflect those of the
US Government. We also acknowledge Madeline Endres for her
insights on human studies of programming.

REFERENCES

[1] F. Schirrmeister, M. McNamara, L. Melling, and N. Bhatnagar,
“Debugging at the hardware/software interface,” Jun. 2012. [On-
line]. Available: https://www.embedded-computing.com/embedded-
computing-design/debugging-at-the-hardware-software-interface

3750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

[2] H. Foster, “Assertion-based verification: Industry myths to realities (in-
vited tutorial),” in Proc. Int. Conf. Comput. Aided Verification, Springer,
2008, pp. 5–10.

[3] J. Wagner, “Intel could make billions off of meltdown & spec-
tre,” Feb. 2018. [Online]. Available: https://www.digitaltrends.com/
computing/intel-could-make-billions-off-meltdown-spectre/

[4] D. Athow, “Pentium FDIV: The processor bug that shook the world,”
Oct. 2014. [Online]. Available: https://www.techradar.com/news/
computing-components/processors/pentium-fdiv-the-processor-bug-
that-shook-the-world-1270773

[5] R. Collins,, “The Pentium f00f bug,” Dr. Dobbs’s The World of Soft-
ware Development, 1998. Accessed: May 9, 2023. [Online]. Avail-
able: https://www.drdobbs.com/embedded-systems/the-pentium-f00f-
bug/184410555

[6] T.-Y. Jiang, C.-N. Liu, and J. Y. Jou, “Estimating likelihood of correctness
for error candidates to assist debugging faulty HDL designs,” in Proc.
IEEE Int. Symp. Circuits Syst., 2005, pp. 5682–5685.

[7] J.-C. Ran, Y.-Y. Chang, and C.-H. Lin, “An efficient mechanism for de-
bugging RTL description,” in Proc. IEEE 3rd Int. Workshop Syst.-on-Chip
Real-Time Appl., 2003, pp. 370–373.

[8] R. Bloem and F. Wotawa, “Verification and fault localization for VHDL
programs,” J. Telematics Eng. Soc., vol. 2, pp. 30–33, 2002.

[9] K.-H. Chang, I. Wagner, V. Bertacco, and I. L. Markov, “Automatic error
diagnosis and correction for RTL designs,” in Proc. IEEE Int. High Level
Des. Validation Test Workshop, 2007, pp. 65–72.

[10] J. C. Madre, O. Coudert, and J. P. Billon, “Automating the diagnosis and
the rectification of design errors with PRIAM,” in Proc. IEEE Int. Conf.
Comput.-Aided Des., Dig. Tech. Papers, 1989, pp. 30–33.

[11] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 34–67, Jan. 2019.

[12] M. Monperrus, “The living review on automated program repair,”
Tech. Rep. hal-01956501, 2018. [Online]. Available: HAL/archives-
ouvertes.fr

[13] Y. Liu, L. Zhang, and Z. Zhang, “A survey of test based automatic
program repair,” J. Softw., vol. 13, no. 8, pp. 437–452, 2018.

[14] B. Peischl and F. Wotawa, “Automated source-level error localization in
hardware designs,” IEEE Des. Test Comput., vol. 23, no. 1, pp. 8–19,
Jan./Feb. 2006.

[15] G. Friedrich, M. Stumptner, and F. Wotawa, “Model-based diagnosis
of hardware designs,” Artif. Intell., vol. 111, no. 1, pp. 3–39, 1999.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S000437029900034X

[16] F. Wotawa, “Using multiple models for debugging VHDL designs,” in
Proc. 14th Int. Conf. Ind. Eng. Appl. Artif. Intell. Expert Syst.: Eng. Intell.
Syst., Berlin, Heidelberg:Springer-Verlag, 2001, pp. 125–134.

[17] F. Wotawa, “On the relationship between model-based debugging and
program slicing,” Artif. Intell., vol. 135, no. 1, pp. 125–143, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370201001618

[18] M. M. Mano and M. Ciletti, Digital Design: With an Introduction to the
Verilog HDL. London, U.K.: Pearson, 2013.

[19] Y. Huang, H. Ahmad, S. Forrest, and W. Weimer, “Applying automated
program repair to dataflow programming languages,” in Proc. IEEE/ACM
Int. Workshop Genet. Improvement, J. Petke, B. R. Bruce, Y. Huang, A.
Blot, W. Weimer, and W. B. Langdon, Eds., 2021, pp. 21–22.

[20] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault localization
using execution slices and dataflow tests,” in Proc. IEEE 6th Int. Symp.
Softw. Rel. Eng., 1995, pp. 143–151.

[21] R. Keim, “What is a Hardware Description Language (HDL)?,” 2020, Ac-
cessed: Jan. 11, 2021. [Online]. Available: https://www.allaboutcircuits.
com/technical-articles/what-is-a-hardware-description-language-hdl/

[22] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 3–13.

[23] H. Ahmad, Y. Huang, and W. Weimer, “CirFix: Automatically repair-
ing defects in hardware design code,” in Proc. 27th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., New York, NY,
USA, 2022, pp. 990–1003. [Online]. Available: https://doi.org/10.1145/
3503222.3507763

[24] D. Yang, Y. Qi, and X. Mao, “Evaluating the strategies of statement
selection in automated program repair,” in Proc. Int. Conf. Softw. Anal.
Testing Evol., Springer, 2018, pp. 33–48.

[25] A. Guo, X. Mao, D. Yang, and S. Wang, “An empirical study on the
effect of dynamic slicing on automated program repair efficiency,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018, pp. 554–558.

[26] D. Yang et al., “Where were the repair ingredients for Defects4j bugs?,”
Empir. Softw. Eng., vol. 26, 2021.

[27] D. Yang, Y. Qi, X. Mao, and Y. Lei, “Evaluating the usage of fault
localization in automated program repair: An empirical study,” Front.
Comput. Sci., vol. 15, no. 1, pp. 1–15, 2021.

[28] D. Yang, Y. Lei, X. Mao, D. Lo, H. Xie, and M. Yan, “Is the ground
truth really accurate? Dataset purification for automated program re-
pair,” in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reengineering, 2021,
pp. 96–107.

[29] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Proc.
17th ACM Conf. Comput. Commun. Secur., 2010, pp. 559–572.

[30] H. Kaeslin, Top-Down Digital VLSI Design: From Architectures to
Gate-Level Circuits and FPGAs, H. Kaeslin, Ed., 1st ed., Boston, MA,
USA: Morgan Kaufmann, 2015, pp. 357–389. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B978012800730300006X

[31] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. Cambridge, MA, USA: MIT Press,
1992.

[32] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for software
repair,” in Proc. 13th Annu. Conf. Genet. Evol. Comput., 2011, pp. 1427–
1434.

[33] A. Zeller, “Automated debugging: Are we close,” Computer, vol. 34,
no. 11, pp. 26–31, Nov. 2001.

[34] L. Bening and H. Foster, “RTL formal verification,” in Principles
of Verifiable RTL Design: A Functional Coding Style Supporting
Verification Processes in Verilog, Berlin, Germany: Springer, 2001,
pp. 103–129.

[35] W. Weimer, “Patches as better bug reports,” in Proc. 5th Int. Conf. Gener-
ative Program. Compon. Eng., New York, NY, USA, 2006, pp. 181–190.
[Online]. Available: https://doi.org/10.1145/1173706.1173734

[36] Y. Lou et al., “Can automated program repair refine fault localization?
A unified debugging approach,” in Proc. 29th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., New York, NY, USA, 2020, pp. 75–87. [Online].
Available: https://doi.org/10.1145/3395363.3397351

[37] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in au-
tomatic software repair,” Softw. Qual. J., vol. 21, no. 3, pp. 421–443,
2013.

[38] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proc. 24th Int. Conf. Softw. Eng., 2002,
pp. 467–477.

[39] S. Sudakrishnan, J. Madhavan, E. J. Whitehead Jr, and J. Renau, “Un-
derstanding bug fix patterns in verilog,” in Proc. Int. Work. Conf. Mining
Softw. Repositories, 2008, pp. 39–42.

[40] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. IEEE/ACM 20th Int.
Conf. Autom. Softw. Eng., 2005, pp. 273–282.

[41] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical
evaluation of spectrum-based fault localization,” J. Syst. Softw., vol. 82,
no. 11, pp. 1780–1792, 2009.

[42] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 1–32, 2011.

[43] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibil-
ity and correctness for generate-and-validate patch generation systems,”
in Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 24–36.

[44] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in Proc. 6th Int. Conf. Genet.
Algorithms, 1995, pp. 184–192.

[45] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned
from human-written patches,” in Proc. IEEE 35th Int. Conf. Softw. Eng.,
2013, pp. 802–811.

[46] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
template-based automated program repair,” in Proc. 28th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2019, pp. 31–42.

[47] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: Fix-
ing semantic bugs with fix patterns of static analysis violations,” in
Proc. IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, 2019,
pp. 456–467.

[48] S. Sutherland, RTL Modeling With SystemVerilog for Simulation and
Synthesis Using SystemVerilog for ASIC and FPGA Design. Tualatin,
OR, USA: Sutherland HDL, Incorporated, 2017.

[49] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proc. 36th Int. Conf. Softw. Eng.,
2014, pp. 254–265.

SANTIESTEBAN et al.: CIRFIX: AUTOMATED HARDWARE REPAIR AND ITS REAL-WORLD APPLICATIONS 3751

[50] F. Long and M. Rinard, “Automatic patch generation by learning cor-
rect code,” in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp. Princ.
Program. Lang., 2016, pp. 298–312.

[51] R. Poli and W. B. Langdon, “Genetic programming with one-point
crossover,” in Proc. Soft Comput. Eng. Des. Manuf., Springer, 1998,
pp. 180–189.

[52] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection
schemes, and the varying effects of noise,” Evol. Comput., vol. 4, no. 2,
pp. 113–131, 1996.

[53] C. Le Goues, W. Weimer, and S. Forrest, “Representations and operators
for improving evolutionary software repair,” in Proc. 14th Annu. Conf.
Genet. Evol. Comput., 2012, pp. 959–966.

[54] C. S. Timperley, “Advanced techniques for search-based program repair,”
Ph.D. dissertation, University of York, York, U.K., 2017.

[55] J. Vasconcelos, J. A. Ramirez, R. Takahashi, and R. Saldanha, “Im-
provements in genetic algorithms,” IEEE Trans. Magn., vol. 37, no. 5,
pp. 3414–3417, Sep. 2001.

[56] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic pro-
gramming approach to automated software repair,” in Proc. 11th Annu.
Conf. Genet. Evol. Comput., 2009, pp. 947–954.

[57] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proc. IEEE 31st Int.
Conf. Softw. Eng., 2009, pp. 364–374.

[58] “IEEE standard for verilog hardware description language,” IEEE Std
1364, IEEE Computer Society, New York, NY, USA, 2006.

[59] S. Romano, C. Vendome, G. Scanniello, and D. Poshyvanyk, “A multi-
study investigation into dead code,” IEEE Trans. Softw. Eng., vol. 46,
no. 1, pp. 71–99, Jan. 2020.

[60] S. Takamaeda-Yamazaki, “Pyverilog: A Python-based hardware design
processing toolkit for verilog HDL,” in Proc. Int. Symp. Appl. Reconfig-
urable Comput., Springer, 2015, pp. 451–460.

[61] V. Synopsys, “Verilog simulator,” 2004. [Online]. Available: http://www.
synopsys.com/products/simulation/simulation.html

[62] Synopsys, “VCS functional verification solution,” 2020. [Online]. Avail-
able: https://www.synopsys.com/verification/simulation/vcs.html

[63] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program repair via semantic analysis,” in Proc. IEEE 35th Int. Conf.
Softw. Eng., 2013, pp. 772–781.

[64] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” Genet. Program. Evolvable Machines, vol. 15,
no. 3, pp. 281–312, 2014.

[65] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empir. Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[66] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in Proc.
Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[67] S. Staber, B. Jobstmann, and R. Bloem, “Finding and fixing faults,” in
Proc. Adv. Res. Work. Conf. Correct Hardware Des. Verification Methods,
Springer, 2005, pp. 35–49.

[68] P. McMinn, “Search-based failure discovery using testability transforma-
tions to generate pseudo-oracles,” in Proc. 11th Annu. Conf. Genet. Evol.
Comput., 2009, pp. 1689–1696.

[69] R. Feldt, “Generating diverse software versions with genetic program-
ming: An experimental study,” IEE Proc.-Softw., vol. 145, no. 6, pp. 228–
236, 1998.

[70] L. I. Manolache and D. G. Kourie, “Software testing using model pro-
grams,” Softw. Pract. Exp., vol. 31, no. 13, pp. 1211–1236, 2001.

[71] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M. Hashim,
“An automated framework for software test oracle,” Inf. Softw. Technol.,
vol. 53, no. 7, pp. 774–788, 2011. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584911000589

[72] K. Aggarwal, Y. Singh, A. Kaur, and O. Sangwan, “A neural net based
approach to test oracle,” ACM SIGSOFT Softw. Eng. Notes, vol. 29, no. 3,
pp. 1–6, 2004.

[73] F. Gholami, N. Attar, H. Haghighi, M. V. Asl, M. Valueian, and S.
Mohamadyari, “A classifier-based test oracle for embedded software,”
in Proc. IEEE Real-Time Embedded Syst. Technol., 2018, pp. 104–111.

[74] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware as-
sertions with guidance from static analysis,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 32, no. 6, pp. 952–965,
Jun. 2013.

[75] J. Chen et al., “Supporting oracle construction via static analysis,” in
Proc. IEEE/ACM 31st Int. Conf. Autom. Softw. Eng., 2016, pp. 178–189.

[76] M. Hanafy, H. Said, and A. M. Wahba, “New methodology for digital
design properties extraction from simulation traces,” in Proc. IEEE 10th
Int. Conf. Comput. Eng. Syst., 2015, pp. 91–98.

[77] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim, “A
comparative study on automated software test oracle methods,” in Proc.
IEEE 4th Int. Conf. Softw. Eng. Adv., 2009, pp. 140–145.

[78] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,
Boston, MA, USA: Addison-Wesley Professional, 2000.

[79] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo, “Optimizing
for the number of tests generated in search based test data generation with
an application to the oracle cost problem,” in Proc. IEEE 3rd Int. Conf.
Softw. Testing Verification Validation Workshops, 2010, pp. 182–191.

[80] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test
inputs using a natural language model to reduce human oracle cost,” in
Proc. IEEE 6th Int. Conf. Softw. Testing Verification Validation, 2013,
pp. 352–361.

[81] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test oracle
assessment and improvement,” in Proc. 25th Int. Symp. Softw. Testing
Anal., 2016, pp. 247–258.

[82] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 507–525, May 2015.

[83] C. L. Seitz, C. Mead, and L. Conway, “System timing,” in Introduction to
VLSI Systems, Boston, MA, USA: Addison-Wesley, 1980, pp. 218–262.

[84] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic
method for automatic software repair,” IEEE Trans. Softw. Eng., vol. 38,
no. 1, pp. 54–72, Jan./Feb. 2012.

[85] N. Alsolami, Q. Obeidat, and M. Alenezi, “Empirical analysis of object-
oriented software test suite evolution,” Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 11, 2019.

[86] B. L. Miller et al., “Genetic algorithms, tournament selection, and the
effects of noise,” Complex Syst., vol. 9, no. 3, pp. 193–212, 1995.

[87] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic program
repair with evolutionary computation,” Commun. ACM, vol. 53, no. 5,
pp. 109–116, 2010.

[88] Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer, “Eyes on code: A
study on developers code navigation strategies,” IEEE Trans. Softw. Eng.,
vol. 48, no. 5, pp. 1692–1704, May 2022.

[89] S. Stapleton et al., “A human study of comprehension and code summa-
rization,” in Proc. 28th Int. Conf. Prog. Comprehension, 2020, pp. 2–13.

[90] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proc. 38th Int. Conf.
Softw. Eng., 2016, pp. 691–701.

[91] J. H. Perkins et al., “Automatically patching errors in deployed software,”
in Proc. 22nd ACM Symp. Operating Syst. Princ., Big Sky, Montana,
USA, J. N. Matthews and T. E. Anderson, Eds., 2009, pp. 87–102.
[Online]. Available: https://doi.org/10.1145/1629575.1629585

[92] V. Taraate, Digital Logic Design Using Verilog: Coding and RTL Syn-
thesis. Berlin, Germany: Springer, 2016.

[93] S. Kirbas et al., “On the introduction of automatic program repair in
bloomberg,” IEEE Softw., vol. 38, no. 4, pp. 43–51, Jul./Aug. 2021.

[94] Y. Huang, K. Leach, Z. Sharafi, N. McKay, T. Santander, and W. Weimer,
“Biases and differences in code review using medical imaging and eye-
tracking: Genders, humans, and machines,” in Proc. 28th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., New York,
NY, USA, 2020, pp. 456–468. [Online]. Available: https://doi.org/10.
1145/3368089.3409681

[95] J. Lehman et al., “The surprising creativity of digital evolution: A col-
lection of anecdotes from the evolutionary computation and artificial life
research communities,” Artif. Life, vol. 26, no. 2, pp. 274–306, May 2020.
[Online]. Available: https://doi.org/10.1162/artl_a_00319

[96] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a program
repair bot? Insights from the repairnator project,” in Proc. IEEE/ACM
40th Int. Conf. Softw. Eng.: Softw. Eng. Pract. Track, 2018, pp. 95–104.

[97] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How do
fixes become bugs?,” in Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf.
Found. Softw. Eng., New York, NY, USA, 2011, pp. 26–36. [Online].
Available: https://doi.org/10.1145/2025113.2025121

[98] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? Overfitting in automated program repair,” in Proc. 10th
Joint Meeting Found. Softw. Eng., 2015, pp. 532–543.

[99] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in semantics-
based automated program repair,” Empir. Softw. Eng., vol. 23, no. 5,
pp. 3007–3033, 2018.

3752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 7, JULY 2023

[100] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for multi-
hunk program repair,” in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.,
2019, pp. 13–24.

[101] K. Liu et al., “A critical review on the evaluation of automated pro-
gram repair systems,” J. Syst. Softw., vol. 171, 2021, Art. no. 110817.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121220302156

[102] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le
Traon, “You cannot fix what you cannot find! An investigation of fault
localization bias in benchmarking automated program repair systems,”
in Proc. IEEE 12th Conf. Softw. Testing Validation Verification, 2019,
pp. 102–113.

[103] Y. Xiong et al., “Precise condition synthesis for program repair,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng., 2017, pp. 416–426.

[104] J. Xuan et al., “Nopol: Automatic repair of conditional statement bugs
in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 34–55,
Jan. 2017.

[105] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for
multi-hunk program repair,” in Proc. IEEE 41st Int. Conf. Softw. Eng.,
2019, pp. 13–24. [Online]. Available: https://doi.org/10.1109/ICSE.
2019.00020

[106] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proc. IEEE/ACM 38th
Int. Conf. Softw. Eng., 2016, pp. 691–701.

[107] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?,” in Proc. Int. Symp. Softw. Testing Anal., New
York, NY, USA, 2011, pp. 199–209. [Online]. Available: https://doi.org/
10.1145/2001420.2001445

[108] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2016, pp. 267–278.

[109] F. Anderson, T. Grossman, and G. Fitzmaurice, “Trigger-action-circuits:
Leveraging generative design to enable novices to design and build
circuitry,” in Proc. 30th Annu. ACM Symp. User Interface Softw. Tech-
nol., New York, NY, USA, 2017, pp. 331–342. [Online]. Available:
https://doi.org/10.1145/3126594.3126637

[110] J. Gillenwater, G. Malecha, C. Salama, J. Grundy, and J. O’Leary,
“Formalizing and enhancing verilog,” Technology and Talent for the 21st
Century, Austin, TX, USA, 2007.

[111] C. Salama, J. Gillenwater, G. Malecha, and A. Zhu, “Synthesizable
verilog,” Hardware Design and Functional Languages, Braga, Portugal,
2007.

[112] J. Gillenwater et al., “Synthesizable high level hardware descriptions:
Using statically typed two-level languages to guarantee verilog synthe-
sizability,” in Proc. ACM SIGPLAN Symp. Partial Eval. Semantics-Based
Prog. Manipulation, New York, NY, USA, 2008, pp. 41–50. [Online].
Available: https://doi.org/10.1145/1328408.1328416

[113] H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design
Compiler Physical Compiler and Primetime, New York, NY, USA:
Springer, 2002.

[114] K. Morris, “Timing is everything: The trouble with timing closure in
FPGA design,” Electron. Eng. J., 2013.

[115] R. Aggarwal, “FPGA place & route challenges,” in Proc. Int. Symp. Phys.
Des., 2014, pp. 45–46.

[116] S. Simoglou, C. Sotiriou, and N. Blias, “Static timing analysis induced
simulation errors for asynchronous circuits,” in Proc. IEEE Int. Symp.
Defect Fault Tolerance VLSI Nanotechnol. Syst., 2021, pp. 1–4.

[117] G. Dessouky et al., “Hardfails: Insights into software-exploitable hard-
ware bugs,” in Proc. USENIX Secur. Symp., 2019, pp. 213–230.

[118] A. Arcuri and G. Fraser, “On parameter tuning in search based software
engineering,” in Proc. Int. Symp. Search Based Softw. Eng., Springer,
2011, pp. 33–47.

[119] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for simple
program repairs,” in Proc. IEEE/ACM 37th Int. Conf. Softw. Eng., 2015,
pp. 448–458.

[120] M. Martinez and M. Monperrus, “ASTOR: A program repair library for
Java,” in Proc. 25th Int. Symp. Softw. Testing Anal., 2016, pp. 441–444.

Priscila Santiesteban received the BA degree in
computer science and physics from Coe College and
is currently working toward the graduate degree with
the University of Michigan. Her research interests
relate to software engineering with an emphasis on
human factors and programming.

Yu Huang received the BA degree in aerospace en-
gineering from the Harbin Institute of Technology,
the MS degree in computer engineering from the
University of Virginia, and the PhD degree in com-
puter science and engineering from the University
of Michigan. She is currently an assistant professor
of computer science with Vanderbilt University. Her
research focuses on software engineering and human
factors.

Westley Weimer received the BA degree in computer
science and mathematics from Cornell University,
and the MS and PhD degrees in computer engineering
from the University of California, Berkeley. He is
currently a professor of computer science with the
University of Michigan. His main research interests
include static and dynamic analyses to improve soft-
ware quality and fix defects, as well as medical imag-
ing and human studies of programming.

Hammad Ahmad received the BS degree in com-
puter science from Washington and Lee University
and the MS degree in computer science and engineer-
ing from the University of Michigan. He is currently
working toward the PhD degree with the University
of Michigan. His research interests relate to software
engineering with an emphasis on human factors and
pedagogy.

